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Abstract
I propose TRIV–Rep, a union-of-models estimator for a linear causal effect with endoge-
nous treatment, weak or noisy instruments, high-dimensional proxies, and scarce outcome
labels. The method builds a self-supervised representation of raw covariates and an or-
thogonal tri-score that remains valid if any one of three routes holds: (I1) a valid (possibly
weak) instrument conditional on the learned representation; (I2) a proxy-only bridge that
requires no completeness; or (I3) a correctly specified treatment–residual model given the
representation. I show local minimaxity among orthogonal scores and derive

√
n inference

with cross-fitting under o(n−1/4) rates for nuisance learners met by contrastive encoders
and flexible regressions. The tri-score attains efficiency in each constituent submodel and
hence on their union. Simulations and a Yelp application illustrate robustness to weak
instruments and sparse labels, using the same estimating equation across all three routes.

JEL codes: C14, C21, C26, C38
Keywords: instrumental variables; self-supervised learning; representation learning; weak
instruments; proxy variables; high-dimensional data; causal inference

1 Introduction

The biggest promise—but also the main statistical headache—of modern digital platforms is
that they generate massive but unbalanced data. While billions of user interactions—such
as clicks, searches, or impressions—are logged each day, only a small subset of these ac-
tions is associated with observed outcomes of interest like purchases or churn. This creates
a difficult estimation environment marked by three distinct statistical frictions. First, the
randomization cues introduced by engineers into production systems tend to be weak in-
struments that affect the treatment only through noisy or indirect channels (Stock, Wright,
and Yogo, 2002). Second, many confounders, such as user intent or product appeal, are
not directly observed but may leave proxy traces in high-dimensional raw data (Newey and
Powell, 2003; Deaner, 2022, 2023). Third, the label density is often extremely low: only a
small fraction of logged user events have observed outcomes, which severely limits the use
of conventional supervised estimators (Meunier et al., 2025).

This paper introduces TRIV–Rep, a triple-robust1 estimator that combines self-supervised
representation learning with orthogonal moment construction. The key innovation is a

1. In the paper, triple-robustness is used in a union-of-models sense: consistency holds if any one of
identification routes is satisfied. This differs from the “any two of three models” notion common in
missing-data settings.
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tri-score moment function ψi(τ, θ) = vi
[
Zi − πγ

(
Rη(Xi)

)] (
[Yi − µY

(
Rη(Xi)

)
] − τ [Di −

µD
(
Rη(Xi)

)
]
)
, where vi = 1 when every outcome is observed, and vi = Si/ρn (an inverse-

probability weight) when labels are missing. The score is orthogonal to three nuisance blocks:
(i) an SSL encoder Rη(X) trained on the unlabeled bulk of events via contrastive InfoNCE
(van den Oord, Li, and Vinyals, 2018), (ii) an instrument regression πγ(R) := E[Z | R], and
(iii) outcome and treatment regressions µY (R) := E[Y | R] and µD(R) := E[D | R]. The
tri-score secures identification if any one of three routes holds: (I1) Z is a valid (possibly
weak) instrument given R; (I2) R is a proxy that is L2-complete for the latent confounder
and satisfies cue-sufficiency, so (Z − π(R)) is orthogonal to the structural residual; or (I3)
the treatment–residual model is correctly specified so that E[Y − τ0D | R] = 0. Route (I3)
implies (I1), while (I2) is complementary; I analyze the union of (I1)–(I3) and refer to the
estimator as triple-robust. In this union model the tri-score is locally minimax among first-
order orthogonal moments, and its influence function coincides with the efficient influence
in each submodel, yielding semiparametric efficiency on the union. The tri-score’s influence
function equals the efficient influence function in each submodelMj ; by the union-efficiency
theorem, it is therefore semiparametrically efficient on M∪. Note that standard two-block
DML–IV procedures can fail when the learned representation is insufficient to restore con-
ditional instrument validity. In contrast, the tri-score in this paper uses the same estimating
equation but is valid under any one of three routes to identification (I1)–(I3), strictly en-
larging the set of conditions under which the estimator is identified. A second innovation
is to formalize a proxy-only route that requires no completeness. Under a latent U with
cue–sufficiency (Z ⊥⊥ U | R) and outcome isolation (ε ⊥⊥ (Z,R) | U), there exists a bridge
b(R) with E[ε | Z,R] = b(R). For any h(Z,R) satisfying E[h | R] = 0, the unconditional
proxy moments E[h(Z,R){Y − τD}] = 0 identify τ , and the classical exogeneity restric-
tion E[ε | Z,R] = 0 is not needed. I derive the efficient instrument within the proxy class
H = {h : E[h | R] = 0} and a cross-fitted estimator that enforces E[ĥ | R] ≈ 0 in sample.

The method connects to several strands in the literature. First, I build on work in
semiparametric IV estimation with machine learning (Belloni, Chernozhukov, and Hansen,
2014; Hartford et al., 2017; Chernozhukov et al., 2018; Farrell, Liang, and Misra, 2021), where
orthogonal scores enable valid inference in high-dimensional settings. These approaches
assume a valid, sufficiently strong instrument and require accurate estimation of both the
first-stage and outcome regressions; they can break down when instruments are weak or
when unobserved confounding remains after the chosen controls. The present construction
generalizes this setup by introducing a third block—an embedding of the covariates—trained
via a contrastive self-supervised objective, allowing the method to leverage unlabeled data.
Thus, the proposed estimator extends the two-block orthogonal moments of Chernozhukov
et al. (2018) for IV by adding a representation block Rη(Xi) learned from unlabeled X,
enabling identification when instruments are latent/weak.

Second, the identification argument extends the proxy–control framework via the L2-
completeness condition of Newey and Powell (2003) and its high-dimensional refinements by
Deaner (2022, 2023), which spell out when rich proxy variables can neutralize latent con-
founding. The approach sidesteps the need to explicitly model the confounder by operating
on a low-dimensional representation Ri = Rη(Xi), learned from data. Related work using
variational autoencoders (Cheng et al., 2023; Wu and Fukumizu, 2021; Hartford et al., 2017)
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also seeks to learn representations for causal estimation, though those approaches typically
rely on a fully specified generative decoder and richer supervision (e.g., paired instruments).

Third, the encoder is learned with a contrastive InfoNCE/Spectral-Contrastive (SCL)
loss. Recent theory shows that such contrastive embeddings can be statistically consistent
and, under separability or spectral conditions, rate-optimal (Arora et al., 2019; HaoChen et
al., 2021). Leveraging existing PAC–Bayes generalization bounds for spectrally normalized
networks (Neyshabur et al., 2018)—and, more directly, the contrastive-specific analysis of
HaoChen et al. (2021)—I show that the encoder Rη achieves the o(n−1/4) L2 rate required
for
√
n-valid inference whenever a sufficiently large pool of unlabeled data is available. An al-

ternative path uses margin-based Rademacher-complexity bounds for spectrally normalized
ReLU networks (Bartlett, Foster, and Telgarsky, 2017).2 Finally, the logic of using multiple
identification paths draws inspiration from the literature on multiply robust and triple-
robust estimation in causal inference and missing data (Robins and Rotnitzky, 1995; Tch-
etgen Tchetgen, Robins, and Rotnitzky, 2010; Okui, Small, Tan, and Robins, 2012), though
those works generally assume a fully observed treatment and focus on missing outcomes.
In contrast, the approach in this paper includes both endogeneity and high-dimensional
proxies, as well as label scarcity, and thus requires a different moment structure.

In sum, the proposed estimator departs from existing work in four respects. (i) It
augments the two–block orthogonal scores of double machine–learning IV with a third,
self–supervised representation block, thereby preserving identification when either the in-
strument is weak or the proxy is incomplete. (ii) In contrast to proxy–control methods
that assume a known complete basis, the representation is learned from unlabeled covari-
ates, so that identification leverages the sheer scale of modern logs rather than hand-crafted
features. (iii) Where recent VAE-based IV approaches rely on dense labels and strong in-
struments, I allow the labeled pool to be vanishingly small and prove that the encoder still
attains the o(n−1/4) rate required for

√
n-valid inference. (iv) Finally, while multiply robust

estimators in the missing-data literature handle outcome non-response, they assume an ex-
ogenous treatment; the tri–score controls simultaneously for endogeneity, proxy noise, and
label sparsity. Taken together, these elements yield what I call a triple-robust estimator—
identification is secured provided at least one of three high-level conditions holds—and, to
my knowledge, no existing method offers this combination of self-supervised learning, weak-
IV tolerance, and finite-sample orthogonality. Theoretical results, evidence from simulations
and real-world data application suggest that this design yields improved performance over
standard two-block scores in finite samples, particularly in environments with weak instru-
ments and limited labels. The estimator may thus offer a useful tool for causal estimation
in high-dimensional digital settings where unobserved confounding and limited supervision
are common.

Two variants of the proxy route appear in the paper. The operational one for estimation
and empirical work is I2 (bridge-only): cue–sufficiency Z ⊥⊥ U | R and outcome isolation
ε ⊥⊥ (Z,R) | U imply a bridge b(R) = E[E(ε | U) | R] and the unconditional moments
E[h(Z,R){Y −τD}] = 0 for all instruments h with E[h | R] = 0. This form does not require
completeness. Separately, I discuss the stronger proxy-complete case—useful for mapping to

2. HaoChen et al. (2021) give contrastive-specific PAC–Bayes bounds; Neyshabur et al. (2018) provide
generic spectral-norm PAC–Bayes bounds for deep networks.
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triple-proxy identification—where R is L2-complete for U . Completeness is not used by the
estimator and can be deferred to an appendix cross-walk.

Section 2 introduces the structural framework, the three identification routes (I1)–(I3),
and the treatment of label sparsity. Section 3 presents the tri–score, establishes Neyman
orthogonality, and states the main large-sample results (consistency,

√
n–normality) together

with the minimax and efficiency theorems. Section 4 states sufficient rate conditions for
the nuisance learners, and Section 5 gives the central limit theorem and sandwich inference.
Section 6 reports Monte Carlo evidence for the three identification routes. Section 7 contains
the Yelp application and Section 8 concludes.

2 Model

2.1 Structural Framework and Core Moment

Consider a set of observations {(Yi, Di, Xi)}ni=1, where Yi ∈ R is a scalar outcome, Di ∈ R
is a potentially endogenous treatment, and Xi ∈ Rdx is a high-dimensional vector of raw
covariates (e.g., text tokens, device IDs). The central idea is to leverage the information
within the high-dimensional Xi by partitioning it into two components: Randomization cue
Zi := ζ(Xi) ∈ Rdz , where ζ : Rdx → Rdz is a deterministic extractor; Zi serves as an IV
(possibly externally logged). Proxy representation Ri := Rη0(Xi) ∈ Rdr , a self-supervised
embedding intended to control for latent confounding.

The data are generated by a linear structural model:

Yi = τ0Di + εi, (1)
Di = g0(Xi) + Ui, (2)

where τ0 is the causal parameter of interest. The function g0(·) is an unrestricted nuisance
function, and Ui is a scalar unobserved confounder that may be correlated with both the
treatment assignment and the outcome, i.e., Cov(Ui, εi) ̸= 0. This potential correlation
renders Di endogenous. The structural error εi is mean-independent of the full covariate
vector, E[εi | Xi] = 0, but not necessarily of the confounder Ui. The endogeneity arises
because, in general, E[Ui | Xi] ̸= 0. The goal is to identify τ0 using a moment condition
built from the observed data (Yi, Di, Zi, Ri). The proposed estimator is built around the
following "tri-score" moment function:

ψ(τ, θ) = v [Z − πγ(R)]
(
[Y − µY (R)]− τ [D − µD(R)]

)
, v ≡ 1. (3)

Here, θ = (η, γ, φ) collects the nuisance functions3: the encoder Rη(X) producing the
representation R; the instrument regression πγ(R) ≈ E[Z | R]; and the outcome and treat-
ment regressions µY (R) ≈ E[Y | R] and µD(R) ≈ E[D | R]. The residualized score above is
algebraically equivalent to v[Z−π(R)]{Y −τD−mφ(R)} with mφ(R) = µY (R)−τ µD(R).
In particular: E

[
(Z − π(R)){(Y − µY (R)) − τ(D − µD(R))}

]
= E[(Z − π(R))(Y − τD −

mφ(R))]. I implement the residualized form so that the nuisance blocks do not depend on
τ . The estimator for τ0 is found by solving the sample analogue of the population moment
equation Ψ(τ, θ0) = E[ψ(τ, θ0)] = 0, where θ0 denotes the true nuisance parameters.

3. The scalar weight v is fixed at 1 under full observation; in Section 2.4, it is replaced by an
inverse-probability weight when labels are missing.
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2.2 Identification

Identification of τ0 relies on the moment equation E
[
ψ(τ0, θ0)

]
= 0. A simple expansion of

the population moment Ψ(τ) := E[ψ(τ, θ0)] reveals its structure:

Ψ(τ) = E
[
(Z − π0(R)) ε

]
− (τ − τ0)C, C := E

[
(Z − π0(R)) {D − µD,0(R)}

]
. (4)

Define the (scalar) Jacobian in τ by S := ∂τΨ(τ0, θ0). Since E[(Z−π0(R))µD,0(R)] = 0, I
have S = −E

[
(Z−π0(R))D

]
= −C. Use S = −C throughout to denote the Jacobian in τ .

Setting Ψ(τ) = 0 uniquely identifies τ = τ0 provided (i) Orthogonality, E[(Z−π0(R)) ε] = 0,
and (ii) Relevance, C ̸= 0 (Assumption 2.1).

Assumption 2.1 (Weak relevance) There exists κ > 0 such that Var
(
E[D | Z,R]

)
≥ κ

and ess infr Var
(
E[D | Z,R = r]

)
≥ κ.

Assumption 2.2 (Cue–sufficiency and proxy completeness) There exists a latent U
such that: (i) Z ⊥ U | R (given R, the cue Z adds no information about U); (ii) ε :=
Y − τ0D ⊥ (Z,R) | U ; (iii) R is L2–complete for U : if E[h(U) | R] = 0, then h(U) = 0
almost surely.

Remark 1 (Comparison to triple-proxy identification) The triple-proxy literature (e.g.
Deaner (2023)) typically assumes Z⊥R | U together with a third proxy and completeness. In
contrast, my proxy route imposes cue-sufficiency Z⊥U | R and L2–completeness of R, which
together form a self-contained sufficient condition for the orthogonality E[(Z−π0(R)) ε] = 0
without invoking the full triple-proxy setup.

Proposition 2 (Triple-proxy cross-walk) Suppose Z ⊥R | U , ε⊥ (Z,R) | U , and R is
L2–complete for U (conditions as in Deaner, 2023). Then U is identified up to a monotone
transform, but this does not imply E[(Z − E[Z | R]) ε] = 0. If, in addition, cue–sufficiency
Z⊥U | R holds, the tri-score orthogonality follows.

Remark 3 (Cue–sufficiency is stronger than additive–noise proxies) Additive–noise
proxy models deliver “forward” conditional independences, Z⊥R | U and ε⊥(Z,R) | U , but
they do not deliver the “reverse” sufficiency Z⊥U | R. Intuitively, a noisy R rarely makes
Z uninformative about U ; a second noisy readout of U (namely Z) still carries residual
information about U even after conditioning on R.

Let U ∼ N (0, σ2U ), Z = U + ξ1, R = U + ξ2 with ξ1, ξ2 independent of each other and
of U , and mean zero. Then Z⊥R | U holds by construction, but Cov(Z,U | R) = Var(U |
R) = σ2U ·

σ2
2

σ2
U+σ2

2
> 0 whenever σ22 > 0, so Z ⊥̸ U | R unless R is noise-free. Thus, the

(I2) condition Z⊥U | R is an additional restriction that must be assumed or justified (e.g.,
R is a learned representation sufficient for Z).

Assume the structural form Z = h1(U) + ξ1, with ξ1 ⊥ U ; R = h2(U) + ξ2, with ξ2 ⊥
(U, ξ1); and ε = h3(U) + ξ3, with ξ3 ⊥ (U, ξ1, ξ2), where each ξj is mean-zero, full-support,
independent and identically distributed (i.i.d.) noise. Then (ii) holds by construction; (iii)
(completeness of R for functions of U) follows from standard additive-noise completeness
results in NPIV (e.g. Newey and Powell (2003); Ai and Chen (2003)) provided the noise ξ2
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is independent of U and has full support; by contrast, cue–sufficiency (i) Z ⊥ U | R does not
follow from this setup and must be imposed separately if one wants the orthogonality E[(Z−
π0(R)) ε] = 0 used by the tri-score4. In particular, the additive-noise proxy model alone
yields Z⊥R | U but typically fails Z⊥U | R unless R is noise-free; hence cue–sufficiency is
a substantive extra restriction needed for the I2 orthogonality exploited here:

Proxy Definition Role w.r.t. U

W1 Z Noisy stimulus correlated with U but engineering-set
W2 R = Rη0(X) Data–driven proxy for U (§4)
W3 ε = Y − τ0D Outcome residual capturing U only

Under the conditional–independence structure Z ⊥R | U and ε⊥ (Z,R) | U , together
with completeness of R (Assumption 2.2, matching the completeness requirement on the
second proxy in Deaner (2023)) and the usual injectivity/variation condition on the third
proxy, the triple-proxy result of Deaner (2023) identifies U up to a one-to-one reparame-
terization. By itself, this does not imply the moment orthogonality E[(Z − π0(R)) ε] = 0.
Orthogonality holds only when cue–sufficiency Z ⊥ U | R (Assumption 2.2(i)) is also im-
posed, in which case E[(Z − π0(R)) ε] = E

[
(E[Z | U,R] − E[Z | R])E[ε | U ]

]
= 0. Hence,

the tri-score moment identifies τ0 even when the classical IV orthogonality E[ε | Z,R] = 0
fails (e.g., due to latent confounding). Conversely, when Z is a valid instrument conditional
on R, route (I1) alone suffices and the triple-proxy conditions are unnecessary. The causal
structures underlying these routes are illustrated in Figure 1.

S S S

D

Z

R

Y

U

(a) I1

D

Z

R

Y

U

(b) I2

D

Z

R

Y

U

blocked by µY (R)− τ0µD(R)

(c) I3

Figure 1: Causal DAGs for the three identification routes. Dashed bidirected edges denote
associations via the latent U . In panel (b) (I2), the key restrictions are cue–sufficiency
Z⊥U | R and outcome isolation ε⊥(Z,R) | U ; these imply E[ε | Z,R] = b(R) and hence
E[h(Z,R){Y − τD}] = 0 for any h with E[h | R] = 0 (no completeness required). The
gray “S” box indicates outcome sampling; it is inactive here and becomes active only in
the MNAR figure in the appendix.

4. Note that completeness in (iii) is not required for the orthogonality E[(Z − π0(R)) ε] = 0 used by the
tri-score; it matters only for mapping to triple-proxy identification results.
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(I1) (Valid IV) The cue Z is a valid instrument conditional on the representation R.
Formally, E[ε | Z,R] = 0. This is the classic IV assumption: Z affects the outcome Y
only through the treatment D, after conditioning on the controls R.

(I2) (Proxy route) Assumption 2.2 holds. Then E
[
(Z−π(R)) ε

]
= 0 even if E[ε | Z,R] ̸= 0.

Hence the score identifies τ0 without classical IV validity.

(I3) (Correct nuisance models) The regression nets are correctly specified: πγ(R) = E[Z |
R] and mφ(R) = E[Y − τ0D | R]. In particular E[ε | R] = 0, which delivers orthogo-
nality.

Note that a distinctive feature of TRIV–Rep is that the three orthogonalization routes
(I1)–(I3) based- estimator remains consistent if any one route holds, while efficiency is
preserved in the union model. The self-supervised representation R̂, learned from unlabeled
(X,Z), directly enables (I2) in high-dimensional designs by extracting the relevant Rη(X)
that satisfies the conditional moment restrictions without manual proxy selection. This
integration of semi-supervised learning into the identification step has, to my knowledge,
not been formalized in prior literature.

Remark 4 (Relationships among (I1)–(I3)) Route (I3) implies (I1) because E[ε | R] =
0 entails E[ε | Z,R] = 0. Under Assumption 2.2 (route (I2)), the orthogonality E[(Z −
π(R)) ε] = 0 holds, but in general E[ε | Z,R] need not be zero; thus (I2) does not imply (I1).
The estimator is therefore triple-robust over the union model, with a partial nesting given
by (I3) ⊂ (I1).

Theorem 5 (Triple-robust identification) Assume weak relevance (Assumption 2.1) and
that at least one of the conditions (I1)–(I3) holds. Then the population moment Ψ(τ) =
E[(Z − π0(R))(Y − τD −m0(R))] has a unique root at τ = τ0.

Proof [Proof of Theorem 5] Let ε := Y − τ0D and define C := E[(Z − π0(R))D], which
is nonzero by weak relevance (Assumption 2.1). Using E[(Z − π0(R))µD,0(R)] = 0, the
population moment can be written as Ψ(τ) = E

[
(Z−π0(R)) ε

]
−(τ−τ0)C. Hence it suffices

to show E[(Z − π0(R)) ε] = 0. Under each route: (I1) Valid IV given R. If E[ε | Z,R] = 0,
then by iterated expectations, E[(Z−π0(R)) ε] = E

[
E
[
(Z−π0(R)) ε | Z,R

]]
= 0. (I2) Proxy

route (cue–sufficiency and outcome isolation). Assume Z ⊥ U | R and ε ⊥ (Z,R) | U .
Then ε ⊥ Z | (U,R) and E[ε | U,R] = E[ε | U ]. Therefore E

[
(Z − π0(R)) ε

]
= E

[
E
[
Zε −

π0(R)ε | U,R
]]

= E
[(
E[Z | U,R] − E[Z | R]

)
E[ε | U ]

]
= 0, because Z ⊥ U | R implies

E[Z | U,R] = E[Z | R]. (Note that no completeness is needed for this step.) (I3) Correct
residual model. If E[ε | R] = 0, then E[(Z − π0(R)) ε] = E

[
(Z − π0(R))E[ε | R]

]
= 0. In all

three cases E[(Z − π0(R)) ε] = 0, so Ψ(τ) = −(τ − τ0)C and, since C ̸= 0, the unique root
is τ = τ0.

2.3 Proxy-only identification via conditional-mean-zero instruments (route I2)

Throughout this subsection Z may be vector-valued; for h ∈ H I interpret h(Z,R) as any
square-integrable scalar function with E[h | R] = 0. When Z is multivariate, the canonical
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element Z − E[Z | R] is taken component-wise and scalar h may be any linear or nonlinear
functional of it. Let σ(R), σ(Z,R), and σ(U) denote the σ–algebras generated by the
corresponding random elements. All random variables are square–integrable unless noted,
and all equalities hold P–a.s. For L2–statements below, measurability is always with respect
to σ(Z,R) unless specified. Define µD(r) := E[D | R = r], and write α(Z,R) := E[D |
Z,R] − µD(R) and w(Z,R) := E[ε2 | Z,R]. Assume w > 0 a.s. and E[w] < ∞. Maintain
the structural model and the MAR weighting vi := Si/ρn from Sections 2.1–2.3, and write
ε := Y − τ0D.

Assumption 2.3 (I2 proxy structure: cue–sufficiency and outcome isolation) There
exists a latent U such that Cue–sufficiency: Z ⊥⊥ U | R and Outcome isolation: ε ⊥⊥
(Z,R) | U .

Lemma 6 (Bridge existence under I2) Under Assumption 2.3 there exists a measurable
bridge b : R → R such that E[ε | Z,R] = b(R) with b(R) = E

[
E[ε | U ] | R

]
. In

particular,
E[ ε− b(R) |Z,R] = 0, (5)

which holds without invoking any completeness condition.

Remark 7 (Role of completeness) Completeness of R for functions of U is not required
for Lemma 6 or for the orthogonality E[(Z−π0(R)) ε] = 0 used by the tri-score. Completeness
becomes relevant only when mapping to triple-proxy identification (e.g. Deaner, 2023) or for
recovering U up to a one-to-one transform.

Proof [Proof of Lemma 6] By outcome isolation, ε ⊥⊥ (Z,R) | U , hence E[ε | U,Z,R] =
E[ε | U ] a.s. By cue–sufficiency, Z ⊥⊥ U | R, so conditioning on (Z,R) is equivalent to
conditioning on R for any measurable function of U : E

[
E[ε | U ] | Z,R

]
= E

[
E[ε | U ] |

R
]

=: b(R). Thus E[ε | Z,R] = E
[
E[ε | U,Z,R] | Z,R

]
= E

[
E[ε | U ] | Z,R

]
= b(R).

Measurability of b with respect to σ(R) follows from the Doob–Dynkin lemma, and square
integrability from E[ε2] < ∞ and Jensen’s inequality. Therefore E[ε − b(R) | Z,R] = 0
without any completeness assumption.5

Define the I2 instrument class

H :=
{
h(Z,R) ∈ L2 : E[h(Z,R) | R] = 0

}
. (6)

Multiplying (5) by any h ∈ H and taking expectations yields the proxy-only unconditional
moments

E
[
(Y − τD)h(Z,R)

]
= 0 ∀h ∈ H. (7)

Assumption 2.4 (Residual relevance over H) There exists h◦ ∈ H with E
[
Dh◦(Z,R)

]
̸=

0.

5. The next results use only Assumption 2.3. Completeness is not invoked for identification or inference
under I2; it appears later solely to connect to triple-proxy identification results.
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Theorem 8 (I2-only identification by proxy moments) Under Assumptions 2.3 and 2.4,
the scalar τ0 is the unique value satisfying (7). In particular, if h◦ ∈ H has E[Dh◦] ̸= 0,

then τ0 =
E
[
Y h◦(Z,R)

]
E
[
Dh◦(Z,R)

] .
Proof [Proof of Theorem 8] Let H = {h ∈ L2(σ(Z,R)) : E[h | R] = 0}. For any h ∈ H,
E[(Y − τD)h] = E[(ε + (τ0 − τ)D)h] = E[εh]︸ ︷︷ ︸

(i)

+(τ0 − τ)E[Dh]. To evaluate (i), use

Lemma 6: E[εh] = E
[
E[ε | Z,R]h

]
= E

[
b(R)h(Z,R)

]
= E

[
E[h | R] b(R)

]
= 0, since

E[h | R] = 0 a.s. Hence E[(Y − τD)h] = (τ0 − τ)E[Dh]. If E[(Y − τ̃D)h] = 0 for all h ∈ H,
in particular for h◦ ∈ H from Assumption 2.4 with E[Dh◦] ̸= 0, I must have τ̃ = τ0. The
ratio formula follows by taking h = h◦.

Example 1 (I2 holds but I1 fails) Let U ∼ N (0, 1), R = h2(U) + ξr, Z = π(R) + ξz,
and ε = h3(U) + ξε, with (ξr, ξz, ξε)⊥ (U, ξr′ , ξz′ , ξε′) mutually independent and mean–zero.
Then Z ⊥⊥ U | R (since Z depends on U only through R) and ε ⊥⊥ (Z,R) | U . Therefore
Assumption 2.3 holds. I have E[ε | Z,R] = E[E[ε | U ] | Z,R] = E[h3(U) | R] =: b(R),
which is generically nonzero unless h3 ≡ 0. Hence the classical IV condition E[ε | Z,R] =
0 (I1) fails in general. Yet E

[
(Z − E[Z | R]) ε

]
= E

[
E
[
(Z − E[Z | R]) ε

∣∣U,R]] =

E
[
E[Z − E[Z | R] | U,R]︸ ︷︷ ︸

=0

E[ε | U,R]︸ ︷︷ ︸
=E[ε|U ]

]
= 0, so the I2 orthogonality holds and Theorem 8

identifies τ0 via any relevant h ∈ H.

Remark 9 (Distinct from the classical orthogonal IV score) Moment (7) residual-
izes only the instrument side via the constraint E[h | R] = 0; it does not subtract µY (R)−
τ µD(R) from Y − τD. The usual orthogonal IV score corresponds to the singleton choice
h(Z,R) = Z − E[Z | R] and additionally residualizes Y and D on R. Thus (7) defines a
strictly larger, I2-specific instrument class and an alternative orthogonalization strategy.

Proposition 10 (Over-identification under I2) Let h1, . . . , hJ ∈ H with E[Dhj ] ̸= 0
for all j. Under Assumption 2.3, the J unconditional moments E[(Y − τD)hj(Z,R)] = 0
identify the same scalar τ0. Hence the GMM estimator with stacked moments is just-identified
in expectation, and the Hansen J statistic is asymptotically χ2

J−1 under correct specification.

Proof [Proof of Proposition 10] For each j, Lemma 6 implies E[(Y − τ0D)hj ] = E[ε hj ] =
E[b(R)hj ] = E[E[hj | R] b(R)] = 0. If some τ̃ ̸= τ0 solved E[(Y − τ̃D)hj ] = 0 for all j, then
0 = E[(Y − τ̃D)hj ] = E[(Y −τ0D)hj ]+(τ0− τ̃)E[Dhj ] = (τ0− τ̃)E[Dhj ], forcing E[Dhj ] = 0
for all j, contrary to the residual–relevance assumption. Hence the moments identify the
same scalar τ0. Standard just–identified GMM theory with a single scalar parameter and J
valid moments yields the asymptotic χ2

J−1 distribution for Hansen’s J–statistic under usual
regularity (LLN/CLT and a nonsingular long–run variance of the stacked moment).
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Within the class H = {s(Z,R) : E[s | R] = 0, E[s2] < ∞}, the efficient instrument for
the ratio moment s(Z,R){Y − τD} solves

s⋆ = argmax
s∈H

(
E[sD]

)2
E[s2 ε2]

. (8)

Standard calculations (e.g. orthogonality and Cauchy–Schwarz in the Hilbert space {s :

E[s | R] = 0}) give s⋆(Z,R) ∝ E[D−µD(R)|Z,R]
E[ε2|Z,R]

, which under homoskedasticity reduces to
s⋆ ∝ E[D − µD(R) | Z,R]. This characterization is I2-specific because the optimization
is taken over H (the proxy instrument space), rather than over all L2 instruments as in
the classical conditional IV model; the resulting influence function is efficient within the I2
submodel (e.g. Newey, 1990; Ai and Chen, 2003).

Let ĥ be a cross-fitted estimate of some h◦ ∈ H (trained on folds that exclude the
observation used for scoring) and define

ψ
(I2)
i (τ, ĥ) := vi ĥ(Zi, Ri) {Yi − τDi}, Ψ̂(I2)

n (τ) :=
1

n

n∑
i=1

ψ
(I2)
i (τ, ĥ). (9)

The estimating equation Ψ̂
(I2)
n (τ) = 0 has the closed-form solution τ̂I2 =

∑
i vi ĥ(Zi,Ri)Yi∑
i vi ĥ(Zi,Ri)Di

.

Under MAR with constant label rate, replacing vi = Si/ρn by Si/ρ̂n is second–order (Slut-
sky).

Proposition 11 (Efficient instrument within H) Over H = {s : E[s | R] = 0, E[s2ε2] <
∞}, the maximizer of {E[sD]}2

E[s2ε2] is unique up to scale and satisfies s⋆(Z,R) ∝ E[D−µD(R)|Z,R]
E[ε2|Z,R]

.

Proof [Proof of Proposition 11] Maximize E[sD] subject to E[s2ε2] = 1 and E[s | R] =
0 using a Lagrangian with multiplier λ ∈ R and a function multiplier µ(R): L(s) =
E[sD] − λ

2 E[s
2ε2] − E[µ(R)s]. The FOC is E[δs{D − λε2s − µ(R)}] = 0 for all δs, hence

D = λε2s + µ(R) a.s. Taking E[· | Z,R] and subtracting E[· | R] yields E[D − µD(R) |
Z,R] = λE[ε2 | Z,R] s(Z,R), proving the claim.

Lemma 12 (Orthogonality with an estimated proxy instrument) Let the sample be
split into K ≥ 2 folds. On each training complement (−k), fit any preliminary ĥ(−k)(Z,R),
and estimate the population conditional mean of this learner by regressing the pseudo–outcome
ĥ(−k)(Z,R) on R using only the training folds: m̂(−k)(r) ≈ E

[
ĥ(−k)(Z,R) | R = r

]
. Define

the cross–fitted, population–demeaned instrument on the held–out fold Ik by ĥ(−k)⊥ (Zi, Ri) :=

ĥ(−k)(Zi, Ri)− m̂(−k)(Ri), i ∈ Ik, and set ĥi := ĥ
(−k)
⊥ (Zi, Ri). Let b(R) = E[E(ε | U) | R] be

the bridge from Lemma 6 and assume b ∈ L2. If, for each k, the mean–regression error obeys∥∥ m̂(−k)−E[ĥ(−k) | R]
∥∥
2
= op(n

−1/2), then, at τ = τ0, E
[{
Y−τ0D

}
ĥ(Z,R)

∣∣∣ {training folds}
]

=

op(n
−1/2), so the IPW moment is first–order valid (mean op(n−1/2)). If ∥ĥ−h◦∥2 = op(1) for

some fixed h◦ ∈ H with E[Dh◦] ̸= 0, the ratio estimator τ̂I2 =
∑

i vi ĥ(Zi,Ri)Yi∑
i vi ĥ(Zi,Ri)Di

is consistent,

and admits
√
n–asymptotic normality under a row–wise CLT for the weighted summands.
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Proof [Proof of Lemma 12] By Lemma 6, at τ0 I have E[(Y −τ0D) | Z,R] = b(R). Condition
on the training folds so that ĥ(−k) and m̂(−k) are fixed functions on the held–out fold. Then

E
[
{Y − τ0D} ĥ(−k)⊥ (Z,R)

∣∣∣ training
]
= E

[
b(R) {ĥ(−k)(Z,R)− m̂(−k)(R)}

]
(10)

= E
[
b(R)

{
E[ĥ(−k)(Z,R) | R]− m̂(−k)(R)

}]
. (11)

By Cauchy–Schwarz and b ∈ L2,
∣∣E[b(R){E[ĥ(−k) | R] − m̂(−k)(R)}

]∣∣ ≤ ∥b∥2
∥∥ m̂(−k) −

E[ĥ(−k) | R]
∥∥
2

= op(n
−1/2). This yields the stated first–order validity. For the estima-

tor, write τ̂I2 − τ0 =
1
n

∑
i vi ĥi (Yi−τ0Di)
1
n

∑
i vi ĥiDi

. The numerator equals n−1
∑

i vi ĥi εi whose con-

ditional mean is op(n−1/2) by the argument above and whose variance obeys a row–wise
Lindeberg CLT (assumed). The denominator converges in probability to E[Dh◦] ̸= 0 by
∥ĥ− h◦∥2 = op(1). Slutsky’s theorem gives consistency and

√
n–normality.

Two simple and valid choices are: (a) ĥ(Z,R) = Z − Ê[Z | R] (nonparametric/logistic),
and (b) the “optimal” element of a sieve HK that maximizes held-out correlation with
D subject to E[h | R] = 0: ĥ ∈ argmaxh∈HK

∣∣Efold[Dh(Z,R)]
∣∣ s.t. Efold[h(Z,R) |

R] = 0, with all nuisance fits and the choice of h cross-fitted. Assumption 2.4 is testable
from labeled-free data by a first-stage t-test for E[D ĥ] ̸= 0. With fixed h◦, the influence
function for τ is −{h◦(Z,R)(Y − τ0D)}/E[Dh◦], yielding the usual ratio-moment variance:

Var(τ̂I2) ≈
Var

(
h◦(Z,R)(Y−τ0D)

)
n
(
E[Dh◦(Z,R)]

)2 . Cross-fitting ĥ preserves first-order validity because E[{Y −

τ0D}ĥ(Z,R) | training] = E[b(R)ĥ(Z,R)] = 0 via E[ĥ | R] = 0.

Algorithm 1 I2 proxy–instrument learner (cross-fitted)

Input: Folds {Ik}Kk=1, basis {gj(R)}Kj=1

1: for k = 1, . . . ,K do
2: Fit π̂(−k)(r) ≈ E[Z | R = r] on ∪ℓ̸=kIℓ
3: For i ∈ Ik, set z̃i := Zi − π̂(−k)(Ri)
4: Fit weights ŵ(−k) on ∪ℓ̸=kIℓ by regressing D on {z̃ gj(R)}Kj=1 (ridge or lasso)

5: Define ĥi :=
∑K

j=1 ŵ
(−k)
j z̃i gj(Ri) for i ∈ Ik

6: (Projection) On the training folds, regress the pseudo–outcome ĥ(−k)(Z,R) :=∑
j ŵ

(−k)
j (Z − π̂(−k)(R)) gj(R) on R to get m̂(−k)(r) ≈ E[ĥ(−k) | R = r]; for i ∈ Ik

set ĥi ← ĥ(−k)(Zi, Ri)− m̂(−k)(Ri).
7: end for

Output: Cross-fitted instrument ĥ with E[ĥ | R] ≈ 0

Corollary 13 (Tri-score under I2: validity and when it is efficient) Under Assump-
tion 2.3, for every h ∈ H the population moment E

[
h(Z,R){Y − τD}

]
= 0 has the

unique root τ0. In particular, the “orthogonal tri–score” ψi(τ, θ) = vi [Zi − π(Ri)]
(
[Yi −

µY (Ri)] − τ [Di − µD(Ri)]
)

has the same population root τ0 (residualizing Y and D on R
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does not affect identification). Moreover, let s⋆ denote the I2–efficient instrument from the
variational problem (8). The score based on h = s⋆ is locally semiparametric–efficient in
the I2 submodel. The special choice h(Z,R) = Z − π(R) is generally not efficient unless
E[D − µD(R) | Z,R] ∝ Z − π(R) a.s. (e.g. a homoskedastic linear first stage).

Proof [Proof of Corollary 13] Validity: for any h ∈ H, E
[
h(Z,R){Y−τ0D}

]
= E

[
h(Z,R)E[Y−

τ0D | Z,R]
]
= E

[
h(Z,R) b(R)

]
= 0, because b(R) is R–measurable and E[h | R] = 0. For

the tri–score, expand E
(
[Z − π(R)]

(
µY (R) − τµD(R)

))
= E

(
E[Z − π(R) | R]

(
µY (R) −

τµD(R)
))

= 0, hence its population moment equals E
(
[Z − π(R)](Y − τD)

)
and has the

same unique root τ0. Efficiency: within the proxy instrument space H = {h : E[h | R] =
0, E[h2] <∞}, the efficient instrument is s⋆ from (8). A score using h = s⋆ attains the semi-
parametric efficiency bound in the I2 submodel. The choice h = Z −π(R) coincides with s⋆

only under the alignment condition stated; otherwise it is valid but generally sub-optimal.

2.4 Handling Label Scarcity via IPW

In practice, the outcome Yi is often unobserved for most of the data. Let Si ∈ {0, 1}
indicate whether Yi is observed (labeled), and let nℓ =

∑n
i=1 Si be the number of labeled

units. Throughout this subsection write Ri := Rη(Xi).

Assumption 2.5 (Missing at Random (MAR)) Si ⊥ Yi | (Xi, Di, Zi) (MAR) and Pr(Si =
1 | Xi, Di, Zi) = ρ > 0 (positivity). In the main analysis I assume ρ is constant.

When all outcomes are observed (Si ≡ 1), the residualized tri-score is ψi(τ, θ) = [Zi −
π(Ri)] ([Yi − µY (Ri)]− τ [Di − µD(Ri)]), where the nuisance functions are µY (R) := E[Y |
R], µD(R) := E[D | R], and π(R) := E[Z | R]. Equivalently, C = E[(Z − π(R))D]
because E[(Z − π(R))µD(R)] = 0. The corresponding population moment is Ψ(τ) :=
E[(Z−π(R)){(Y −µY (R))−τ(D−µD(R))}] = E[(Z−π(R)) ε]−(τ−τ0)C, with ε := Y −τ0D
and C := E[(Z − π(R))(D − µD(R))] (residual relevance). Under MAR, the same moment
can be estimated from the labeled subsample by inverse-probability weighting. Let ρ̂ := nℓ/n
and set vi := Si/ρ̂. The IPW tri-score is

ψi,n(τ, θ) =
Si
ρ̂

[
Zi − π(Ri)

] (
[Yi − µY (Ri)]− τ [Di − µD(Ri)]

)
. (12)

Because S ⊥ Y | (X,D,Z) and E[S | X,D,Z] = ρ, I have E
[
S
ρ ψi(τ, θ)

]
= E[ψi(τ, θ)],

so IPW recovers the fully-observed population moment. Replacing ρ by ρ̂ perturbs the
moment by op(n−1/2) when ρ is constant (Slutsky’s theorem), and therefore does not affect
first-order inference.6 Thus, all identification results in Section 2.2—via a valid instrument
(I1), the proxy route (I2), or a correct treatment–residual model (I3)—carry over directly

6. If the label probability varies with covariates, replace Si/ρ̂ by Si/q̂(Xi, Di, Zi) with a consistent estimate
q̂ of q(X,D,Z) := Pr(S = 1 | X,D,Z). All arguments go through unchanged. When correcting MNAR
with qδ(W ) (with W := (Z,R,D,X)), training µY with weights 1/q̂δ(W ) targets E[Y | R] under the
full-data distribution and can improve rates.
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to the label-scarce setting with the IPW score (12). Under MAR with constant ρ, weighting
labeled rows by S/ρ̂ makes the labeled empirical risk minimization unbiased for the full-
sample risk, so µ̂Y targets E[Y | R]. The causal structures for these routes are summarized in
Figure 1. Core identification and estimation rely on MAR. A fuller treatment of MNAR—its
implications, modeling options, and sensitivity analysis—appears in §B.

2.5 Estimation with Nuisance Learners

The identification strategy relies on three unknown nuisance functions θ0 = (η0, γ0, φ0),
which I approximate by deep ReLU networks trained with K-fold cross-fitting. Raw co-
variates (X,Z,D, S) are mapped by a self-supervised encoder Rη into a low-dimensional
representation R. Using R and the labeled outcomes Y , I fit an instrument (or cue) regres-
sion πγ , outcome and treatment regressions µY and µD, and—when outcomes are missing
not at random (MNAR)—a selection-weight model qδ. When no MNAR layer is modeled,
set qδ ≡ 1; the remaining steps are unchanged. Let θ̂i denote the fold-specific nuisance
vector estimated without row i. These nuisance blocks feed the orthogonal tri-score ψ(τ, θ̂),
whose root yields τ̂ . Ψ̂n(τ̂) :=

1
n

∑n
i=1 ψi,n(τ̂ , θ̂i) = 0, where θ̂i is the fold-specific nuisance

vector estimated without row i. This construction isolates first-order estimation error in the
nuisance blocks and delivers standard Z-estimation with cross-fitting for inference.

2.6 Outcome panels and latent–factor proxies

In many digital settings each unit i generates multiple pre– or post–treatment outcome
measurements, Yi = (Yi1, . . . , YiT )

⊤, rather than the single scalar Yi assumed so far. If
latent user traits drive a low–rank factor structure in Yi, one can treat these repeated
outcomes as implicit proxies for the unobserved confounder and estimate a representation
Ri by matrix–completion techniques instead of contrastive SSL.

Suppose the pre–treatment outcome panel obeys7 Yit = λ⊤i ft + ζit, 1 ≤ t ≤ T. Here
λi ∈ Rr and ft ∈ Rr are time–invariant loadings and common factors with r ≪ min{n, T},
while ζit is mean-zero idiosyncratic noise. Let Y := (Yit)i,t be the n × T matrix of (pre-
treatment) outcomes. Assume a rank–r latent–factor structure together with the standard
incoherence and uniform–random sampling conditions. When the observation scheme is
noiseless, the exact-recovery theorem of Candès and Recht (2009) shows that nuclear-norm
minimisation perfectly recovers Y with high probability once the sampling rate satisfies
p ≳ rµ (n + T ) log2(n ∨ T )/(nT ), where µ is the incoherence constant. With additive,
mean-zero sub-Gaussian noise ζit the non-asymptotic error bounds of Candès and Plan
(2011) and Negahban and Wainwright (2012) imply that any nuclear-norm (or singular-
value–thresholding) estimator Ŷ (mc) satisfies 1

nT

∥∥Ŷ (mc) − Y
∥∥2
F

= Op

(
r(n+T )
nT

)
. This rate

is minimax-optimal up to logarithmic factors and meets the o(n−1/4) requirement used in
Section 4 for the representation Ri = λ̂i. Denote by λ̂i the ith row of the rank-r approxi-
mation; I set the representation

Ri := λ̂i ∈ Rr. (13)

7. A similar structure with post–treatment t and appropriate exclusion can yield a latent-factor instrument ;
see Abadie et al. (2024) for details.
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Write Zi for the randomisation cue (instrument) and εi := Yi − τ0Di for the structural
residual as in (1). With (13) the triple (Zi, Ri, εi) matches the three–proxy setup of Deaner
(2023) . (Zi ⊥⊥ εi) | Ri holds because Ri captures the latent factor that drives both Zi and
εi (Conditional independence). Assumption 2.2 implies the L2–completeness requirement in
Deaner (2023), guaranteeing that E[h(U) | Ri] = 0 ⇒ h ≡ 0 (Proxy completeness). Under
these two conditions the population moment Ψ(τ) = E[(Z − π0(R))(ε− (τ − τ0)D)] retains
a unique zero at τ = τ0, so all identification and efficiency results in Sections 3–5 continue
to hold with the matrix–completion proxy Ri in place of the contrastive SSL embedding.

If r = O(1) and T ≳ log n, the matrix–completion error in (13) is Op(n−1/2). Plug-
ging this into Assumption 3.2 shows that the cross–fitted nuisance bundle still achieves the
joint o(n−1/4) rate required for

√
n–inference (Theorem 34). When rich outcome panels

are available, practitioners may replace the contrastive pre-training step by any consistent
low-rank factor estimator. The remainder of the TRIV–Rep pipeline—orthogonal tri-score,
cross-fitting, and variance estimation—remains unchanged.

Remark 14 (Latent-factor instruments) If one column of Y (say, a post-treatment
surrogate) affects Di but not Yi except through Di, the corresponding loading λ̂i can also
serve as a learned instrument. The tri-score then enjoys identification through route (I1)
even in the absence of an externally provided cue Zi. (See Abadie et al. (2024) for formal
conditions.)

3 Tri-score and Orthogonality

The practical estimator solves the empirical counterpart of (12) using cross-fitting to esti-
mate the nuisance functions. Let the nuisance parameters for observation i, estimated on
other folds, be θ̂i = (η̂i, γ̂i, φ̂i). The estimating equation for the causal slope τ̂ is

Ψ̂n(τ̂) :=
1

n

n∑
i=1

ψi,n(τ̂ , η̂i, γ̂i, φ̂i) = 0. (14)

The key to achieving
√
n-consistency for τ̂ despite using flexible machine learning esti-

mators for θ̂i is the orthogonality of the moment function ψ. Orthogonality ensures that
plug-in errors from estimating the nuisance functions do not contaminate the estimation of
the target parameter τ0 at the first order. Note that the tri-score moment function inherits
a minimax-optimal variance bound in the union model, achieving the semiparametric effi-
ciency bound whenever all nuisance components are consistently estimated. The analysis
collects rate lemmas for all three nuisance blocks, showing that θ̂ remains op(n−1/4)-close
to θ0 uniformly over the union model—this rate being sufficient for root-n inference even
under severely unbalanced label availability.

3.1 First-order (Gâteaux) Orthogonality

The moment function (12) is Neyman-orthogonal with respect to the nuisance parameters.
This means that at the true parameter values (τ0, θ0), the population moment is locally
insensitive to small perturbations in the nuisance functions.
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Lemma 15 (Block-wise mean-zero derivatives) For every nuisance block b ∈ {η, γ, φ},
every direction hb in the corresponding tangent set, and every n ≥ 1, ∂bΨn(τ0, θ0)[hb] = 0.

Proof [Proof of Lemma 15]
For each observation i let ψi(τ, η, γ, φ) = vi [Zi−πγ(Rη(Xi))] [Yi−τDi−mφ(Rη(Xi))], vi :=

Si/ρ, ρ := E[Si]. By definition of πγ0 and mφ0 ,

E[Zi − πγ0(Ri) | Ri] = 0, E[Yi − τ0Di −mφ0(Ri) | Ri] = 0. (15)

Because E[vi | Xi, Di, Zi] = 1 under MAR, premultiplying by vi preserves these zero
means. Differentiate inside the expectation; dominated convergence is justified by the uni-
form (2+δ)-moment envelope in Assumption 5.3: ∂γΨ(τ0, θ0)[hγ ] = −E

[
vi hγ(Ri) (Yi−τ0Di−

mφ0(Ri))
]
= 0 by (15). With δη := hη(Xi), ∂ηΨ(τ0, θ0)[hη] = −E

[
vi⟨∇πγ0(Ri), δη⟩(Yi −

τ0Di −mφ0(Ri))
]
−E

[
vi(Zi − πγ0(Ri))⟨∇mφ0(Ri), δη⟩

]
= 0, again because each bracket has

conditional mean zero given Ri. ∂φΨ(τ0, θ0)[hφ] = −E
[
vi (Zi − πγ0(Ri))hφ(Ri)

]
= 0, by

(15). All first-order derivatives thus vanish.

First-order orthogonality gives ∂ηΨ(τ0, θ0) = 0, so every second-order term in the η
direction is linear in hη. Consequently the quadratic form ∂2ηηΨ(τ0, θ0)[hη, hη] vanishes
identically.

Assumption 3.1 (Identification & first-order orthogonality) Let ψi(τ, θ) be a score
with population moment Ψ(τ, θ) := E[ψi(τ, θ)]. (a) Centred at truth: Ψ(τ0, θ0) = 0. (b)
Identification of the target: ∂τΨ(τ0, θ0) ̸= 0. (c) First-order orthogonality: for every nui-
sance block a ∈ {η, γ, φ} and every direction ha ∈ Ta, Ψ′

a[ha] =
d
dt Ψ(τ0, θ0 + t ha)

∣∣
t=0

= 0.
Equivalently, ∂ηΨ(τ0, θ0) = ∂γΨ(τ0, θ0) = ∂φΨ(τ0, θ0) = 0.

Corollary 16 (Empirical first-order cancellation) 1
n

∑n
i=1 ψi,n(τ0, η̂i, γ̂i, φ̂i) = Op(n

−1/2),
with K-fold cross-fitting.

Proof [Proof of Corollary 16] Condition on the K training folds so that (η̂i, γ̂i, φ̂i) is fixed
on the held-out row i. Lemma 15 then gives conditional mean zero of every summand. A
triangular-array Chebyshev (or CLT) with the (2 + δ) envelope from Assumption 5.3 yields
the n−1/2 rate; unconditioning preserves the order.

3.2 Second–order empirical reminder

Let the K-fold cross-fitted nuisance vector in row i be θ̂i := (η̂i, γ̂i, φ̂i), with ∆θi := θ̂i−θ0 =
(∆ηi,∆γi,∆φi).

Assumption 3.2 (Cross-fit n−1/4 rates) For each block b ∈ {η, γ, φ}, ∥b̂i − b0∥2,n =
op(n

−1/4), uniformly in i.

Proposition 17 (Second-order empirical remainder) Under Assumptions 5.3 and 3.2,
1√
n

∑n
i=1{ψi,n(τ0, θ̂i)− ψi,n(τ0, θ0)} = op(1).
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Proof [Proof of Proposition 17] See Appendix A.1.

Corollary 18 (Bias control) Combine Proposition 17 with the sample-centred first-order
result of Corollary 16: Ψ̂n(τ0, θ̂) :=

1
n

∑n
i=1 ψi,n(τ0, θ̂i) = op(n

−1/2). Hence, the plug-in bias
is negligible relative to the

√
n variance scale of the score.

The block-Hessian calculations and the local minimax theorem are handled separately
in 3.2; no arguments are duplicated across the two sections. As shown in Proposition 17,
the plug-in bias is negligible. The complete estimation routine is given in Algorithm 3.
Throughout, put ψi(τ, θ) := vi{Zi − πγ(Rη(Xi))}{Yi − τDi −mφ(Rη(Xi))} and Ψ(τ, θ) :=
E[ψi(τ, θ)].

Here it is, kept identical in content—just cleanly formatted so it drops in without sur-
prises:

Algorithm 2 TRIV–Rep (MAR): Cross-Fitted Triple-Robust IV

Input: Data {(Xi, Zi, Di, Si, Yi)}ni=1; folds K
1: Pre-train Rη on {Xi}; freeze η and set Ri = Rη(Xi)
2: nL ←

∑
i Si; ρ̂← nL/n

3: for k = 1, . . . ,K do
4: Fit π̂(−k)(r) ≈ E[Z | R], µ̂(−k)D (r) ≈ E[D | R]
5: Fit µ̂(−k)Y (r) on labeled rows with weights Si/ρ̂
6: for each labeled i in fold k do
7: ẑi ← Zi − π̂(−k)(Ri); d̂i ← Di − µ̂(−k)D (Ri); ŷi ← Yi − µ̂(−k)Y (Ri)

8: ψi(τ)← Si
ρ̂ ẑi

(
ŷi − τ d̂i

)
9: end for

10: end for

11: Solve
∑

i:Si=1 ψi(τ̂) = 0; with scalar Z, τ̂ =

∑
i
Si
ρ̂ ẑi ŷi∑

i
Si
ρ̂ ẑi d̂i

Output: τ̂ and CI

Lemma 19 (Exact block Hessian) Let ha ∈ Ta. At (τ0, θ0): ∂2aaΨ[ha, ha] = 0, a ∈
{η, γ, φY , φD} ; ∂2γ,φY

Ψ[hγ , hY ] = E[hγ(R)hY (R)] ; ∂2γ,φD
Ψ[hγ , hD] = −τ0 E[hγ(R)hD(R)] ;

∂2η,γΨ[hη, hγ ] = E[hγ(R) ⟨∇(µY,0−τ0µD,0)(R), hη(X)⟩] ; ∂2η,φY
Ψ[hη, hY ] = E[hY (R) ⟨∇πγ0(R), hη(X)⟩]

; ∂2η,φD
Ψ[hη, hD] = −τ0 E[hD(R) ⟨∇πγ0(R), hη(X)⟩] .

Assumption 3.3 (Bounded block Hessians) For every a, b ∈ {η, γ, φ} the mixed second
derivative ∂2abΨ(τ0, θ0) exists as a continuous bilinear form on Ta × Tb and is finite.

Proof [Proof of Lemma 19]
First-order orthogonality eliminates every diagonal block, giving (19). For the mixed

terms I differentiate the product representation of Ψ twice: (19)–(19) follow from a prod-
uct rule applied to ∂γΨ and the conditional-mean identity E[Y − τ0D −mφ0(R) | R] = 0;
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(19)–(19)–(19) obtain by perturbing the representation Rη(X) and linearising πγ and mφ

around η0. Complete proof is provided in A.2.

Definition 20 (Worst–case quadratic bias) Assume 3.3 so that Ψ̃ is twice Gâteaux-
differentiable. For δ > 0 and an identification-valid score ψ̃ with population moment Ψ̃(τ, θ)
set Bδ(ψ̃) := sup∥h∥≤δ

∣∣Ψ̃(τ0, θ0 + h)
∣∣.

Theorem 21 (Local minimaxity up to constants) Under Assumptions 3.1 and 3.3, let
ψ be the IPW tri–score and let ψ̃ be any other identification-valid score that is first-order
orthogonal at θ0. Define the norm ∥h∥2 := ∥hη∥2L2

+ ∥hγ∥2L2
+ ∥hφ∥2L2

. Then there exist
constants 0 < c⋆ ≤ C⋆ < ∞, depending only on the operator norms ∥∂2abΨ(τ0, θ0)∥op, such
that for all δ > 0, Bδ(ψ) ≤ C⋆ δ2 and Bδ(ψ̃) ≥ c⋆ δ2 , with equality in the lower bound (for
some normalization of the block-Hessian) only if ψ̃ is a nonzero scalar multiple of ψ.

Proof [Proof of Theorem 21] First-order orthogonality removes all linear terms. A second-order
expansion in the three nuisance blocks gives a purely quadratic remainder Q(h) plus o(∥h∥2).
By Assumption 3.3, Q is a continuous bilinear form whose operator norm is finite; hence
|Q(h)| ≤ C⋆∥h∥2 for some C⋆ depending only on ∥∂2abΨ(τ0, θ0)∥op, yielding the upper bound.
Conversely, any other first-order orthogonal score ψ̃ induces a quadratic form Q̃; if Q̃ were
strictly smaller than the tri-score’s mixed blocks in every direction, then ψ would not be
locally least-favorable. Compactness of the unit sphere in the product L2-space implies a
uniform lower bound c⋆ > 0 for sup∥h∥=1 |Q̃(h)|, which gives the stated lower inequality.
Equality requires the mixed second derivatives to match (up to a common scalar), hence
ψ̃ ≡ c ψ after normalization. Details are in A.3.

Let M1 denote the model in which route (I1) holds (valid IV given R), M2 the model
in which route (I2) holds (proxy route: cue-sufficiency plus L2-completeness), and M3 the
model in which route (I3) holds (correct treatment–residual model). I analyze the union
model M∪ :=M1 ∪M2 ∪M3. These models form a partially nested union: M3 ⊂ M1,
M2 ̸⊂ M1, and M1 ̸⊂ M2. Consequently, M2 ∩M3 ⊂ M1. Indeed, under (I3) I have
E[ε | R] = 0, hence E[ε | Z,R] = E

[
E[ε | R] | Z,R

]
= 0, so (I3) implies (I1).

Following Wang and Tchetgen Tchetgen (2018) (see also Bickel et al. (1998)), an esti-
mator τ̂ is efficient in the union model if it is regular and asymptotically linear inM∪ with
influence function equal to the efficient influence function (EIF) for Mj whenever the true
distribution lies in Mj , for j = 1, 2, 3. As shown below (Lemma 22) and proved in detail
in §5.4, the tri-score moment generates an influence function that coincides with the EIF in
eachMj and therefore attains the semiparametric efficiency bound throughoutM∪.

Lemma 22 (EIF compatibility across sub-models) LetM1,M2,M3 be the three semi-
parametric models corresponding to (I1)–(I3) (valid IV, proxy route, correct residual). Sup-
pose a score φ is the efficient influence function in eachMj when the data-generating process
lies inMj. Then, by Theorem 5 of Wang and Tchetgen Tchetgen (2018) (see also Bickel et
al. (1998); Robins and Rotnitzky (1995)), φ attains the semiparametric efficiency bound in
the union model M∪ :=M1 ∪M2 ∪M3.
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Proof [Proof of Lemma 22] By assumption, whenever the data-generating distribution lies
inMj , the proposed influence function φ coincides with the efficient influence function (EIF)
for Mj . Theorem 5 of Wang and Tchetgen Tchetgen (2018) then implies that any influ-
ence function that equals the EIF in each constituent model is efficient for the union model
M∪ :=M1 ∪M2 ∪M3. No inclusion relations between the tangent spaces are required for
this conclusion (see also Bickel et al. (1998); Robins and Rotnitzky (1995)).

Corollary 23 (Semiparametric efficiency) The influence function φi attains the semi-
parametric efficiency bound; see Theorem 44.

3.3
√
n-Normality

Under Assumptions 5.1–5.4 and 5.2, and provided any identification route in Theorem 5
holds,

√
n(τ̂−τ0)⇒ N (0, V ). The

√
n expansion and the CLT proof are given by Lemma 41

and Theorem 42 in §5.3.

4 Rate Conditions for Deep-Net Nuisance Learners

This section establishes rate conditions for deep-net nuisance learners following Shen and
Espinoza (2025); Kohler and Krzyżak (2025); Kohler and Langer (2021); Langer (2021).
Throughout, ∥ · ∥2,P denotes the population L2–norm and ∥ · ∥2,n the row-wise empirical
norm (∥g∥22,n := n−1

∑n
i=1 g

2
i ). For a function class H write N (ε,H, ∥ · ∥∞) for its covering

number under the sup–norm, and let boldface (Θ) collect all network weights. Fix constants
Cτ , Cθ > 0 and define

Nn :=
{
(τ, θ) : |τ − τ0| ≤ Cτn−1/2, ∥θ − θ0∥ ≤ Cθn−1/4

}
. (16)

Lemma 24 (Population Hadamard differentiability) Let Ψ(τ, θ) = E[ψi(τ, θ)] be the
population moment map. Then Ψ is twice Hadamard differentiable at (τ0, θ0).

Proof [Proof of Lemma 24.]See Appendix A.5.

This pointwise result supplies the second–order Taylor expansion of Ψ with o(∥h∥2) remain-
der that is used in the bias/remainder control and in the Hessian/minimax arguments.

Lemma 25 (Stochastic equicontinuity) For the neighborhood Nn in (16), sup(τ,θ)∈Nn

√
n
∣∣Ψ̂n(τ, θ)−

Ψ(τ, θ)
∣∣ = op(1).

Proof [Proof of Lemma 25.]See Appendix A.6.

Combined, Lemmas 24–25 supply the
√
n-normality argument in §5.3. The orthogonality

theory developed in §§ 3.1–3.3 requires the joint empirical rate

max
{
∥η̂ − η0∥2,n, ∥γ̂ − γ0∥2,n, ∥φ̂− φ0∥2,n

}
= op

(
n−1/4

)
. (17)
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Most results for deep nets are stated in the population L2(P ) metric; the next subsection
therefore shows that the two metrics are asymptotically interchangeable under the moment
assumptions. Throughout, I enforce spectral normalization during training (Miyato et al.
(2018)) and clip weights at inference. If layers are merely Lipschitz with a slowly growing
constant Ln = o(n1/8) the op(n−1/4) rate remains valid (see Appendix A.6).

4.1 From population to empirical & bounded inputs

Lemma 26 (Shrinking functions: population =⇒ empirical) Let {gn}n≥1 be a sequence
of row-wise i.i.d. scalar functions such that En[gn] = 0, supn≥1 En[|gn|2+δ] < ∞ for some
δ > 0, and supn≥1 En[g4n] < ∞ (the latter holds if δ ≥ 2). If ∥gn∥2,P = op(n

−1/4), then
∥gn∥2,n = op(n

−1/4).

Proof [Proof of Lemma 26] Write µn := E[g2n] and µ̂n := n−1
∑n

i=1 g
2
ni = ∥gn∥22,n. By

Chebyshev applied to g2n, µ̂n − µn = Op

(√
Var(g2n)/n

)
≤ Op

(√
E[g4n]/n

)
= Op

(
n−1/2

)
,

where the last step uses supn E[g4n] <∞. Since ∥gn∥2,P = op(n
−1/4), I have µn = op(n

−1/2).
Hence µ̂n = µn +Op(n

−1/2) = op(n
−1/2), and therefore ∥gn∥2,n =

√
µ̂n = op(n

−1/4).

Assumption 4.1 (Unit-cube normalization) Every raw covariate is linearly rescaled so
that Xi ∈ [0, 1]dx . After self-supervised encoding, Ri = tanh

(
Rη(Xi)

)
∈ [−1, 1]dr . Bounded

inputs are needed for the entropy bound below and ensure that a network with per-layer
spectral norm ≤ 1 is globally 1-Lipschitz.

4.2 Sieve, entropy, and smoothness

Let F(L,W ) be the class of fully-connected networks of depth L and widthW ; the activation
is σ(u) = max{0, u}. For a radius B > 0 define the ℓ1–ball sieve FB(L,W ) :=

{
f ∈

F(L,W ) : ∥Θ(f)∥1 ≤ B
}
.

Lemma 27 (Entropy of ReLU sieves) Assume ∥x∥∞ ≤ 1 and that every weight matrix
is spectrally normalized: ∥∥Wℓ

∥∥
2
≤ 1, ℓ = 1, . . . , L. (18)

For L ≲ log n and every ε ∈ (0, 1),

logN
(
ε,FB(L,W ), ∥ · ∥∞

)
≤ C LW log

(
B/ε

)
, (19)

with a universal constant C. The bound is scale-insensitive in the sense of Farrell, Liang,
and Misra (2021): it depends only on the aggregate ℓ1-radius B, not on ∥Θ∥∞.

Proof [Proof of Lemma 27] Quantizing the LW parameters on an (ε/B)-grid (Anthony
and Bartlett (1999, §14.3)) and invoking the spectrally-normalized covering Lemma A.5 of
Bartlett et al. (2019) establishes (19). Because inputs lie in the unit cube and each layer
satisfies ∥Wℓ∥2 ≤ 1, the network is 1-Lipschitz, so the grid quantization perturbs the output
by at most the grid width, completing the proof.
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Assumption 4.2 (Hölder regularity) For some s > d/2, Rη0 ∈ Hs([0, 1]dx), πγ0 , mφ0 ∈
Hs([0, 1]dr), with Hs the unit s–Hölder ball.

Throughout the remainder of the paper, the SSL encoder Rη̃ is treated as fixed when
the propensity and outcome networks are cross-fitted; the representation is therefore not
updated inside the K folds. The rate calculations below reflect this separation.

Theorem 28 (Oracle inequality, supervised) Let ĝ minimize 1
n

∑n
i=1 ℓ

(
g(Xi), Yi

)
over

the class FBn(Ln,Wn) with Ln ≍ log n, Wn ≍ nd/(2s+d), Bn ≍ Wn. (a) For the square-
loss and any g0 ∈ Hs([0, 1]d), ∥ĝ − g0∥2,P = Op

(
n−s/(2s+d)

)
. (b) For the logistic loss, the

same rate holds under a Tsybakov margin exponent α > 0.

Proof [Proof of Theorem 28]
Decompose the excess risk into ∥ĝ − g0∥2,P ≤ inf

f∈FBn

∥f − g0∥∞︸ ︷︷ ︸
(A) approximation

+

∥ĝ − f∗∥2,P︸ ︷︷ ︸
(B) estimation

,. Here f∗ is the sup-norm projection of g0 onto FBn . [(A)] Yarotsky (2017) yields

inff∈FBn
∥f − g0∥∞ = O

(
W

−s/d
n

)
. [(B)] Lemma 27 and a localized Rademacher-complexity

argument (Farrell, Liang, and Misra (2021)) give ∥ĝ−f∗∥2,P = Op

(√
LnWn log(Bnn)

n

)
. Balanc-

ing W−s/d
n against

√
LnWn log n/n with Ln ≍ log n and Wn ≍ nd/(2s+d) yields the claimed

rate. See Appendix A.7 for all details. Because s > d/2 implies a := s/(2s + d) > 1/4,
the Op(n−a) bound is automatically op(n

−1/4), so the nuisance block meets the require-
ment (17).

4.3 Self-supervised encoder & master rate

Throughout Sections 4–5 the instrument regression πγ(R) := E[Z | R] is approximated by
a fully connected ReLU network. The two supervised regressions µY (R) := E[Y | R] and
µD(R) := E[D | R] are fit on the labeled folds. All three attain the same op(n−1/4) rate
under the sieve choices below.

(a) Mercer kernel and effective dimension. Let k((z, r), (z′, r′)) be a bounded, universal
Mercer kernel (see Sriperumbudur et al. (2011, Theorem. 7)) on the compact support of
(Z,R). Write Hk for its RKHS and N(λ) :=

∑
j

λj
λj+λ

for the effective dimension. Under
the eigen–decay and source assumptions of Meunier et al. (2024); Fischer and Steinwart
(2020), N(λ) ≍ λ−1/β for some β > 0.

(b) KRR or spectral cut-off. For a labeled fold I of size m = n/K, define π̂KRR
γ :=

argminf∈Hk

1
m

∑
i∈I(Di − f(Zi, Ri))2 + λm∥f∥2Hk

, where λm ≍ m−β/(2β+1). An equivalent
spectral cut-off estimator f =

∑
j≤Mm

⟨φj , D⟩φj with Mm ≍ m1/(2β+1) principal compo-
nents8 yields

∥π̂γ − πγ0∥2,P = Op
(
m−β/(2β+1)

)
, (20)

8. Spectral-truncation idea already appears in Hall and Horowitz (2005, §2.2), but without rate analysis.
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as shown, for example, by Li et al. (2024, Thm. 3). Plugging m = ⌊n/K⌋ and any β > 1/2
makes the rate op(n−1/4), meeting the threshold in Theorem 34.9

(c) Compatibility with the tri-score. KRR is linear in (D,Z,R) and has a closed-form
influence function, so all proofs in §3–§5 remain unchanged—only envelope constants differ.

Remark 29 (Minimax optimality) Under assumptions (EVD), (SRC), and (EMB) of
Meunier et al. (2024), together with the lower bound in Li et al. (2024), rate (20) is minimax
optimal for estimating πγ over the Sobolev ball Wβ

2 . □

Label scarcity (nℓ ≪ n) motivates learning Rη : X 7→ [−1, 1]dr from a much larger
unlabeled pool of size nu ≫ nℓ. Denote by η̃ the parameter that minimizes the In-

foNCE loss LNCE(η) := −E
[
log

exp{⟨Rη(X),Rη(X+)⟩/T}
exp{⟨Rη(X),Rη(X+)⟩/T}+

∑K−1
j=1 exp{⟨Rη(X),Rη(X

−
j )⟩/T}

]
, where

(X+, X−
1 , . . . , X

−
K−1) are independent draws and T > 0 is the temperature (van den Oord,

Li, and Vinyals (2018)). Define nu = ⌈n1+δ⌉ for some δ > 0, and let B ∈ N denote
the mini–batch size used in self-supervised updates. Use the spectrally-normalized sieve
FBu(Lu,Wu) with Lu ≍ log nu, Wu ≍ n

dx/(2s+dx)
u , and Bu ≍ Wu, enforcing ∥Wℓ∥2 ≤ 1 for

every layer (Assumption 4.1); this keeps the network 1-Lipschitz on the unit cube, allowing
use of Lemma 27.

Assumption 4.1 requires bounded inputs only for the rates analysis. The tanh clipping
in Assumption 4.1 is applied only at inference time. The SSL encoder is trained in the usual
unbounded space; after training, its final activations are clipped once before they feed any
nuisance networks. Gradients in the InfoNCE objective are therefore unaffected.

Assumption 4.3 (Spectral gap) The oracle embedding has non-degenerate covariance:
λmin

(
Var

(Rη0(X))
)
≥ λmin > 0.

Theorem 30 (Rate of the SSL encoder) Adopt the sieve above and train η̃ by InfoNCE.
Under Assumptions 4.1, 4.2 and 4.3,

∥∥Rη̃−Rη0∥∥2,P = Op
(
n
− s/(2s+dx)
u

)
, where the general-

ization step uses the PAC-Bayes InfoNCE bound for fully–connected, spectrally-normalized
networks (HaoChen et al. (2021)).

Let δ > 0 satisfy nu = n1+δ and write ax := s/(2s+ dx). Then ax > 1/4 precisely when
δ > (dx−2s)/(2s+dx). In that case Op

(
n−axu

)
= Op

(
n−ax(1+δ)

)
= op

(
n−1/4

)
, so the encoder

block satisfies the global condition (17). (If dx > 2s, achieving ax > 1/4 may require super-
polynomial nu, which is feasible in practice; e.g. industrial logs with (n, nu) ≈ (108, 1011)
already meet this requirement.)

Remark 31 (No new complexity bounds needed) No new margin-based Rademacher,
local- Rademacher, or PAC-Bayes analyses are needed. Existing PAC-Bayes bounds for
spectrally- normalized nets (e.g. HaoChen et al. (2021); Kuzborskij et al. (2024)) already
deliver the o(n−1/4) high- probability L2 rate required here.

9. If β ≤ 1/2 one can enlarge the unlabeled pool or combine kernel features with the deep-net sieve; see
Meunier et al. (2024, §4.3).
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Remark 32 (InfoNCE as baseline) InfoNCE serves only as a diagnostic baseline; in all
main experiments I instead optimize the spectral-contrastive loss (SCL) (e.g. HaoChen et
al. (2021)), introduced later in this subsection. The PAC-Bayes rate in Theorem 30 continues
to hold verbatim for SCL, so all theoretical guarantees remain unchanged.

Proof [Proof of Theorem 30] A standard PAC–Bayes bound for spectrally-normalized nets
gives R(η̃) = Op((LuWu log nu/nu)

1/2). Approximation of the oracle encoder by a ReLU
network yields the same order for the approximation error (e.g. Yarotsky (2017)). Finally
a Poincaré-type inequality (Assumption 4.3) transfers excess risk to an L2-error, giving the
stated rate. I pre–train Rη by spectral–contrastive loss (HaoChen et al. (2021)) LSCL(η) :=∥∥∥I − 1

B ZZ⊤
∥∥∥2
F
, Z := [Rη(X1), . . . , Rη(XB)]. The loss admits the same PAC–Bayes rate

as InfoNCE but avoids negative sampling. See Appendix A.8 for full details.

Corollary 33 (Encoder meets the n−1/4 threshold) Let nu = n1+δ, and suppose ei-
ther dx < 2s with δ > 0 arbitrary, or dx ≥ 2s with δ > (dx − 2s)/(2s + dx). Theorem 30
implies ∥Rη̃ −Rη0∥2,P = op

(
n−1/4

)
; the representation block satisfies the rate requirement in

(17).

Theorem 34 (All nuisance blocks beat n−1/4) Assume the encoder is trained on nu =

n1+δ un-labeled events with


δ > 0, dx < 2s,

δ >
dx − 2s

2s+ dx
, dx ≥ 2s,

so that Theorem 30 yields ∥Rη̃ −

Rη0∥2,P = op(n
−1/4). With the propensity and outcome nets trained as in Theorem 28,

max
{
∥Rη̃ − Rη0∥2,P , ∥πγ̂ − πγ0∥2,P , ∥mφ̂ −mφ0∥2,P

}
= op

(
n−1/4

)
; the global requirement

(17) is satisfied.

Proof [Proof of Theorem 34] Let ∆η,n := ∥Rη̃ − Rη0∥2,P , ∆γ,n := ∥πγ̂ − πγ0∥2,P , and
∆φ,n := ∥mφ̂−mφ0∥2,P . By Theorem 30 and the sample–size condition on nu, n1/4∆η,n

p−→ 0.
By Theorem 28, applied separately to the propensity and outcome nets, n1/4∆γ,n

p−→ 0 and
n1/4∆φ,n

p−→ 0. For any ε > 0 and all sufficiently large n, Pr
(
n1/4max{∆η,n,∆γ,n,∆φ,n} > ε

)
≤

Pr
(
n1/4∆η,n > ε

)
+ Pr

(
n1/4∆γ,n > ε

)
+ Pr

(
n1/4∆φ,n > ε

) n→∞−−−→ 0. The inequality is a
union bound; the limit holds because each summand tends to zero as shown above. Hence
n1/4max{∆η,n,∆γ,n,∆φ,n}

p−→ 0, which is equivalent to max{∆η,n,∆γ,n,∆φ,n} = op
(
n−1/4

)
.

Therefore the joint requirement (17) is satisfied.

Early stopping after roughly 5 log n passes and a weight-decay grid λ ∈ {10−5, 10−4, 10−3}
reproduce the theoretical rates for sample sizes up to n ≈ 106. Unbounded individual weights
are admissible because the variance–adaptive localization argument keeps the covering num-
bers and Bernstein constants under control.

5 Estimation and Inference: Large-Sample Theory

Building on Farrell, Liang, and Misra (2021); Chernozhukov, Chetverikov, and Kato (2018);
Chernozhukov, Fernández-Val, and Luo (2018); Giné and Nickl (2008); Dudley (1999); van
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der Vaart (1998); Newey (1990), this section derives the large-sample properties of the
TRIV–Rep estimator, τ̂ . I first establish consistency, then verify the o(n−1/4) rates for the
nuisance learners, and finally prove

√
n-normality and semiparametric efficiency.

Assumption 5.1 (Identification union) At least one of (I1)–(I3) in Theorem 5 holds so
that Ψ(θ) = 0 =⇒ τ = τ0.

Assumption 5.2 (Cross-fitting rate) With cross–fitting, ∥η̂−η0∥2,n∨∥γ̂−γ0∥2,n∨∥φ̂−
φ0∥2,n = op(n

−1/4).

Assumption 5.3 (Triangular–array Lindeberg conditions) Throughout this assump-
tion let ψi,n denote the row–wise score defined in (12). For each n, {(Yi,n, Di,n, Zi,n, Ri,n)}ni=1

are i.i.d. draws from Pn (Row–wise independence). There exists δ > 0 and measurable
Ψenv : Z → R with |ψi,n(θ)| ≤ Ψenv(Zi,n) for all n, θ, and supn≥1 En[(Ψenv

i,n )
2+δ] < ∞

(Uniform (2 + δ) moment bound). For every ε > 0, 1
n

∑n
i=1 En[ψi,n(θ0)2 1{|ψi,n(θ0)| >

ε
√
n}]→ 0 (Lindeberg–Feller condition).

Assumption 5.4 (Uniform linearization and stable Jacobian) There is a neighbor-
hood N ⊂ Θ of the true parameter θ0 such that: (i) Uniform first-order expansion: For
every bounded direction h and every t small enough with θ0 + t h ∈ N , supn≥1

∥∥Ψn(θ0 +
t h) − Ψn(θ0) − t ∂θΨn(θ0)[h]

∥∥ = o(t) (t → 0). (ii) Stable, nondegenerate score derivative
in τ : Let Sn := ∂τΨn(τ0, θ0) and S := ∂τΨ(τ0, θ0). Then Sn → S and |S| ≥ s0 > 0. (If one
augments the parameter with a finite-dimensional vector λ and linearizes in (τ, λ), assume
the corresponding finite-dimensional Jacobian G is nonsingular.)

5.1 Uniform Hadamard differentiability of sample moment map Ψn

The next lemma verifies Assumption 5.4, upgrading pointwise Gateaux differentiability to
uniform Hadamard differentiability.

Lemma 35 (Uniform Hadamard differentiability of the sample moment) Let Ψn(θ) :=
En[ψi,n(θ)] be the (triangular–array) sample moment map and Gn := ∂θΨn(θ0). Under As-
sumptions 5.3 and the spectral–norm constraint, limt→0 supn≥1

∥∥∥Ψn(θ0+th)−Ψn(θ0)
t −∂θΨn(θ0)[h]

∥∥∥ =

0 and ∥Gn −G∥ → 0, where G := ∂θΨ(θ0). This uniform (in n) result verifies Assump-
tion 5.4 and yields ∂θΨ̂n(θ̄) = G+ op(1) in Lemma 41.

Proof [Proof of Lemma 35] See Appendix A.9.

Boundedness of h holds automatically because directions are taken inside the same ℓ1-ball
sieve as the estimator; see Lemma 27.

Lemma 36 (Bernstein–chaining tail bound) Let Gn be a class of functions g : Z →R
with En[gi] = 0 and ∥gi∥ψ2 ≤ C0 uniformly in g ∈ Gn and i ≤ n. Denote by Pdim(Gn)
their pseudo–dimension. Then for all t > 0, Pr

(
supg∈Gn

∣∣∣ 1√
n

∑n
i=1 gi

∣∣∣ > t
)
≤ 2 exp

{
−c t2+

C Pdim(Gn)
}
, where c > 0 is universal and C depends only on C0.
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Lemma 36 relies on a Bernstein–type chaining bound, not on classical Donsker theory.
Variance–adaptive localization (Remark 37) controls the empirical process via Pr

(
supg∈Gn

|n−1/2
∑
gi| > t

)
≤ 2 exp

{
−ct2 + C Pdim(Gn)

}
, where Pdim(Gn) ≲ LW logB is uniform

in n by Lemma 27. Hence the required stochastic-equicontinuity holds without imposing a
fixed, n-independent Donsker envelope or a uniform bound on individual weights.
Proof [Proof of Lemma 36] Each g ∈ Gn is sub-Gaussian. Bernstein’s inequality shows
Pr(|n−1/2∑n

i=1 gi| > t) ≤ 2 exp(−c t2). Cover Gn by an ε-net of size at most exp{C (Gn) log(1/ε)}
using the Sauer–Shelah/pseudo-dimension bound, take a union bound over the net, and op-
timise over ε in a standard chaining argument. This yields Pr(supg∈Gn

|n−1/2
∑
gi| > t) ≤

2 exp{−c t2 + C (Gn)}.

Remark 37 (Variance–adaptive localization) The stochastic–equicontinuity argument
below follows the variance–adaptive Bernstein localization of Farrell, Liang, and Misra (2021).10

Concretely, Dudley’s chaining integral is evaluated over shells whose data–dependent radii
αk satisfy α2

k ≍ V̂ar
(
ψi,n(θk)

)
(Dudley (1999)). Because the resulting tail bound depends

only on the pseudo–dimension Pdim(Gn) ≲ LW logB (Lemma 27) rather than on ∥Θ∥∞,
it remains valid even when individual network weights are unbounded, provided the global
ℓ1–radius and unit-cube input scaling in Lemma 27 hold. This is the key step that allows the
n−1/4 rate without spectral normalization.

5.2 Consistency and triple-robustness

Theorem 38 (Consistency of the Z–estimator for τ under triangular–array drift)
Suppose Assumptions 5.1–5.4 and the triangular–array moment conditions in Assumption 5.3
hold. Let τ̂ be the Z–estimator that solves (14). Then τ̂ p−→ τ0, and this convergence obtains
provided any one of the identification routes (I1)–(I3) in Theorem 5 holds.

Proof [Proof of Theorem 38] Fix the shrinking neighborhoodNn := {θ : ∥θ−θ0∥ ≤ Cn−1/4}.
Let Gn := {ψi,n(θ) − ψi,n(θ0) : θ ∈ Nn}. Lemma 27 gives the uniform entropy bound
logN

(
ε,Gn, ∥·∥∞

)
≤ C1LW log(B/ε), so the (local) Rademacher radius satisfies Rn(Gn) =

O
(√

LW logB /n
)

= O
(
n−1/2

)
. Applying the variance–adaptive Bernstein–chaining in-

equality of Bartlett, Bousquet and Mendelson (2005)—see the proof of Lemma 25—yields,
for some constants c0, C0 > 0, Pr

(
supθ∈Nn

∥∥Ψ̂n(θ)−Ψn(θ)
∥∥ > t

)
≤ 2 exp{−c0t2+C0 log n}.

Choosing t = C
√
log n gives

sup
θ∈Nn

∥∥Ψ̂n(θ)−Ψn(θ)
∥∥ = Op

(
n−1/2

)
. (21)

The triangular–array nature is immaterial here; the proof of Lemma 25 requires only row-
wise independence plus the moment conditions of Assumption 5.3. Row-wise independence
and supiE∥ψi,n(θ0)∥2+δ< ∞ verify Lindeberg’s condition. Hence, by the triangular–array

10. See also the local Rademacher complexities program ofBartlett, Bousquet and Mendelson (2005).
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CLT in van der Vaart (1998),

1√
n

n∑
i=1

ψi,n(θ0) =⇒ N (0,Σ), Ψ̂n(θ0) = Op
(
n−1/2

)
. (22)

Hadamard differentiability (Lemma 24) implies the second–order expansion Ψn(θ) =
Ψn(θ0)+∂θΨn(θ0) [θ−θ0]+Rn(θ) with ∥Rn(θ)∥ ≤ C2∥θ−θ0∥2. Because ∥θ−θ0∥ ≤ Cn−1/4

on Nn,
sup
θ∈Nn

∥∥Ψn(θ)−Ψn(θ0)
∥∥ = O

(
n−1/2

)
. (23)

Combining (21), (22) and (23), supθ∈Nn

∥∥Ψ̂n(θ)
∥∥ = op(1).

Remark 39 (Rate of the bias term) Lemma 24 yields ∥Rn(θ)∥ ≤ C∥θ − θ0∥2; on Nn
this is O(n−1/2), strictly smaller than the stochastic order n−1/2 of the empirical process, so
the bias is negligible.

Remark 40 (Triangular–array CLT) Row-wise independence together with supiE∥ψi,n(θ0)∥2+δ <
∞ suffices for the Lindeberg condition (van der Vaart (1998)).

5.3 Asymptotic linearity and normality

Write Ψ(τ, θ) := E[ψ(τ, θ)], Ψ̂n(τ) := 1
n

∑n
i=1 ψi,n(τ, θ̂), and let τ̂ denote the Z–estimator

solving Ψ̂n(τ̂) = 0. Define the scalar score derivative S := ∂τΨ(τ0, θ0), which equals
S = −C with C := E[(Z − π0(R)){D − µD,0(R)}] as introduced after (4) in §2.2.11 As-
sumption 5.4(ii) (stable, nondegenerate score derivative) ensures Sn := ∂τΨn(τ0, θ0) → S
and |S| ≥ s0 > 0.

Lemma 41 (Asymptotic linear (root–n) expansion) Under Assumptions 5.1–5.4, 5.3,
and 5.2, with S = ∂τΨ(τ0, θ0) and |S| > 0,

√
n (τ̂ − τ0) = −S−1 1√

n

n∑
i=1

ψi,n(τ0, θ0) + op(1). (24)

Proof [Proof of Lemma 41] A mean–value expansion of the sample moment around τ0 gives
0 = Ψ̂n(τ̂) = Ψ̂n(τ0) + ∂τ Ψ̂n(τ̄) (τ̂−τ0), τ̄ := τ0+s(τ̂−τ0), s ∈ (0, 1). By Lemma 25 and
Assumption 5.2, Ψ̂n(τ0) = n−1

∑n
i=1 ψi,n(τ0, θ0) + op(n

−1/2) = Op(n
−1/2). By Lemma 35

and Assumption 5.4(ii), ∂τ Ψ̂n(τ̄) = S+ op(1) with |S| > 0. Rearranging and multiplying by√
n yields (24).

Theorem 42 (Asymptotic normality of τ̂) Suppose Assumptions 5.1–5.4, 5.3, and 5.2
hold. Let Σ := Var

(
ψi,n(τ0, θ0)

)
and S := ∂τΨ(τ0, θ0) with |S| > 0. Then

√
n (τ̂ − τ0)

d
=⇒

N
(
0, V

)
, V = Σ/S2.

11. Since E[(Z − π0(R))µD,0(R)] = 0, I also have C = E[(Z − π0(R))D].
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Proof [Proof of Theorem 42] By Lemma 41,
√
n (τ̂ − τ0) = −S−1 n−1/2

∑n
i=1 ψi,n(τ0, θ0) +

op(1). Row-wise independence together with supi E∥ψi,n(τ0, θ0)∥2+δ <∞ verifies Lindeberg’s
condition for a triangular array, so n−1/2

∑n
i=1 ψi,n(τ0, θ0) ⇒ N (0,Σ) (e.g. van der Vaart

(1998), Prop. 2.27). Slutsky’s lemma yields the claim with V = Σ/S2.

Remark 43 (Equivalence with the S,Σ formula) With the notation S = −C from §2.2,
the variance representation V = Σ/S2 is identical to the (S,Σ) formula used in the paper.

5.4 Semiparametric efficiency of τ̂

In (I1) the nuisance is the conditional law of (Y,D,Z,R) subject to E[ε | Z,R] = 0; scores
have the form s1(W ) = h(Z,R){ε − E[ε | Z,R]}, so the tangent space is {h(Z,R) − E[h |
Z,R]} multiplied by the residual. In (I2) the nuisance is the joint law of (Z,R, ε) subject to
Z⊥U | R, ε⊥(Z,R) | U , and L2– completeness; pathwise scores are mean-zero functions of
(Z,R) and of (ε,R) orthogonalized by conditioning on R. Score ψ(τ0, θ0) is orthogonal to
both spaces by the same conditioning arguments used in Theorem 5; hence it coincides with
the efficient score in (I1) and (I2). By Theorem 5 of Wang and Tchetgen Tchetgen (2018),
the EIF therefore carries over to the union model. In the scalar target case, the efficient
influence function equals φi = ψi(τ0, θ0)/S, so the efficiency bound is V = Var(ψi)/S

2,
which coincides with Theorem 42.

Write G := ∂θΨ(θ0) for the population Jacobian of the moment map and let Gτ be its
column that corresponds to the scalar target τ . The expansion in Lemma 41 shows that
φi is indeed the EIF of the estimator τ̂ . Throughout this subsection P0 denotes the true
distribution of the observation vector Wi = (Di, Zi, Ri, Yi), and E0[·] is the corresponding
expectation operator. I consider the union M := MIV ∪ MProxy ∪ MTreat, where the
nuisance objects satisfy, respectively:

(I) E[ε | Z,R] = 0 and Var(E[D | Z,R]) > 0 (valid IV given R),
(II) Z⊥U | R, ε⊥(Z,R) | U, R is L2–complete (proxy route),
(III) E[ε | R] = 0 (correct treatment–residual model; hence (I) holds),
Here ε := Y − τ0D, πγ0(R) := E[Z | R], mφ0(R) := E[Y − τ0D | R].

For each sub–model Mm (m ∈ {IV,Proxy,Treat}) let Tm ⊂ L2
0(P0) be its tangent

space, i.e. the mean–zero scores generated by all regular one–dimensional sub-paths. The
next result shows that φi is simultaneously efficient for all three sub-models; hence it is
efficient for the unionM.

Theorem 44 (Semiparametric efficiency) Let V := Var0(φi). Then V coincides with
the semiparametric efficiency bound for τ in eachMm (m = IV,Proxy,Treat) and therefore
in their union M.

Proof [Proof of Theorem 44] See Appendix A.10
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5.5 Variance estimation and inference

The remainder of the paper fixes, for concreteness, one flexible sieve: fully-connected ReLU
networks with growing widthWn and depth Ln. This choice is not an identifying assumption.
Any learner that achieves ∥ η̂−η0∥2,n∨∥ γ̂−γ0∥2,n∨∥ φ̂−φ0∥2,n = op(n

−1/4), and is cross-fit
over the K folds introduced in Assumption 5.2, inherits all results in Sections 3–5. I adopt
ReLU networks trained with the InfoNCE contrastive loss (van den Oord, Li, and Vinyals
(2018); Yarotsky (2017)) because (a) their piecewise linearity makes the tri-score Hessian
tractable (Arora et al. (2018)), and (b) recent PAC–Bayes bounds (Bartlett, Foster, and
Telgarsky (2017); Neyshabur et al. (2018); Kuzborskij et al. (2024)) deliver the required
n−1/4 rate. Define the sample derivative (available in closed form for the tri–score) Ŝ :=
∂τ Ψ̂n(τ̂ , θ̂) = − 1

n

∑n
i=1

Si
ρ̂

[
Zi − π̂(Ri)

] [
Di − µ̂D(Ri)

]
. Set the influence–function estimate

and plug–in variance to φ̂i := Ŝ−1 ψi,n
(
τ̂ , η̂i, γ̂i, φ̂i

)
, V̂ := 1

n

∑n
i=1 φ̂

2
i .

Theorem 45 (Consistency of the plug–in variance) Under Assumptions 3.1–5.3, V̂ p−→
V.

Proof [Proof of Theorem 45] See Appendix A.11.

Let ei
i.i.d.∼ N (0, 1) be independent of the data and T# := 1√

n

∑n
i=1 ei φ̂i

/√
V̂ .

Theorem 46 (Bootstrap validity) Conditional on the sample and uniformly over the
three identification scenarios, supt∈R

∣∣Pr#(T# ≤ t) − Pr
(√
n(τ̂ − τ0) ≤ t

)∣∣ p−→ 0. Hence
the percentile bootstrap CI [τ̂ ± c#1−α V̂ 1/2/

√
n] is asymptotically exact.

Proof [Proof of Theorem 46] See Appendix A.12.

Combining Theorems 5, 38, 42, 45, and 46 (under the standing moment/rate conditions
with cross–fitting), TRIV–Rep is (i) consistent and

√
n–normal whenever any one of the

routes (I1)–(I3) holds; (ii) equipped with a consistent closed-form variance estimator (45);
(iii) accompanied by a uniformly valid multiplier bootstrap (46); and (iv) semiparametrically
efficient for the union model (44).

6 Monte Carlo Evidence

I study the finite–sample performance of TRIV–Rep. Each design isolates one identification
route in Theorem 5 (I1–I3) as the operative source of identification. Across designs, the entire
pipeline—representation learner, cross–fitting/sample–splitting, orthogonal score, and root
solving—is held fixed; competitors are implemented analogously and succeed only when
their own identifying restrictions are met.

Data generating process (DGP) and learning setup

For each Monte–Carlo cell I draw (Ai, Zi, Di, Yi) according to one of three identification
routes (I1–I3). Throughout, Ai ∼ N (0, 1) and there is no direct effect of Z on Y (exclusion,
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δZ = 0). The treatment equation is Di = bZZi + bAAi + νi, (bZ , bA) = (0.4, 0.7), νi ∼
N (0, 1). The outcome equation and the instrument differ by route:

I1 (valid IV): Zi ∼ Bernoulli(0.5),

Yi = τ0Di + gAAi + εi, gA = 0.5, εi ∼ N (0, 1).

I2 (proxy route): Zi ∼ Bernoulli
(
logit−1(γAi)

)
, γ = 1,

Yi = τ0Di + gAAi + εi + εconf
i , εconf

i = 0.6Ai, εi ∼ N (0, 1).

I3 (residual alignment): Zi ∼ Bernoulli(0.5),

Yi = τ0Di + εi, εi ∼ N (0, 1),

so that E[εi | Ri] = 0 holds exactly in I3. By construction εconfi = 0.6Ai implies E[εi |
Zi, Ri] = E[0.6Ai | Zi, Ri] ̸= 0, so the classical IV condition (I1) is violated while the proxy
route (I2) remains valid. The target is τ0 = 1.

In I1 I construct a high–dimensional noisy proxy Xi for Ai by hashing nonlinear trans-
forms of Ai with independent noise, and then learn a self–supervised embedding Ri ∈ R64

via a token autoencoder trained on the full sample (unlabeled). In I2 and I3 I set Ri = Ai
(oracle representation). For the Proxy–IV baseline I build a scalar noisy proxy Pi = Ai+ηi,
ηi ∼ N (0, 0.52), and residualize (Z,D, Y ) on P (ridge) before two–stage estimation; this
serves as an infeasible baseline and is not a gold standard. I draw labels Si ∈ {0, 1} by
simple random sampling with rate ρ = nL/n ∈ {1,000/n, 2,000/n, 5,000/n}; only Yi is miss-
ing when Si = 0. Estimation for TRIV–Rep uses inverse–probability weights vi = Si/ρ
and K–fold cross–fitting for π(R) = E[Z | R], µD(R) = E[D | R] (fit on all rows) and
µY (R) = E[Y | R] (fit on labeled rows). The score, influence function, and multiplier boot-
strap used for inference follow the implementation detailed in the code (see Appendix . . . ).

6.1 Results

Tables 1, 2, and 3 report Monte–Carlo results from B = 200 replications for three labeled
sample sizes and five estimators.12 The data–generating process combines a weak instru-
ment, latent confounding, and label scarcity; each of the three identification routes (I1–I3) is
implemented as a separate design that satisfies the corresponding conditional independence
restrictions. Within each design, Panels A–C raise the labeled sample from nL = 1,000 to
2,000 to 5,000 (with the total n increasing in lockstep). For every estimator I report the
Monte–Carlo mean τ̂ , the empirical standard deviation across replications [s.e. (MC)], the
empirical 2.5%/97.5% quantiles [95% CI], and two diagnostics—Bias and RMSE—together
with the empirical coverage rate of nominal 95% intervals (Cov95). Appendix Figures 5–6
provide complementary sensitivity and orthogonality diagnostics, and Appendix Tables 8–10
summarize the associated statistics. I discuss the results by route (I1–I3), focusing on how
bias, RMSE, and Cov95 evolve with nL and on whether the finite–sample patterns align
with the identification and orthogonality properties established by the theory.

12. Oracle 2SLS observes the latent confounder Ai. Proxy–IV replaces Ai by a noise–perturbed but sufficient
proxy and thus serves as a second (infeasible) gold standard. Double ML uses the same self–supervised
embedding and cross–fitting as TRIV–Rep but omits the instrument Z. DML–IV is the standard
two–stage DML estimator with Z. TRIV–Rep is the proposed triple–proxy estimator.
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Table 1: Monte–Carlo estimates, B = 200 replications; Route I1 (Valid IV)

Panel A: n = 5, 000, nL = 1, 000

Method τ̂ s.e. (MC) 95% CI Bias RMSE Cov95

Oracle 2SLS 1.0112 0.1743 [0.7123, 1.3851] 0.0112 0.1742 0.97
Proxy–IV 1.0094 0.1837 [0.6839, 1.3950] 0.0094 0.1835 0.96
Double ML 1.2265 0.0288 [1.1738, 1.2772] 0.2265 0.2283 0.00
DML-IV 1.0041 0.1963 [0.6066, 1.3779] 0.0041 0.1958 0.96
TRIV–Rep 1.0042 0.1959 [0.5995, 1.3706] 0.0042 0.1955 0.96

Panel B: n = 20, 000, nL = 2, 000

Method τ̂ s.e. (MC) 95% CI Bias RMSE Cov95

Oracle 2SLS 1.0100 0.1127 [0.7803, 1.2244] 0.0100 0.1129 0.96
Proxy–IV 1.0073 0.1164 [0.8050, 1.2245] 0.0073 0.1163 0.96
Double ML 1.2244 0.0197 [1.1887, 1.2651] 0.2244 0.2252 0.00
DML-IV 0.9985 0.1316 [0.7308, 1.2293] -0.0015 0.1313 0.96
TRIV–Rep 1.0004 0.1316 [0.7559, 1.2343] 0.0004 0.1313 0.96

Panel C: n = 100, 000, nL = 5, 000

Method τ̂ s.e. (MC) 95% CI Bias RMSE Cov95

Oracle 2SLS 0.9965 0.0705 [0.8757, 1.1214] -0.0035 0.0704 0.96
Proxy–IV 0.9968 0.0710 [0.8475, 1.1235] -0.0032 0.0709 0.96
Double ML 1.2262 0.0130 [1.2017, 1.2536] 0.2262 0.2266 0.00
DML-IV 0.9935 0.0815 [0.8219, 1.1521] -0.0065 0.0816 0.94
TRIV–Rep 0.9921 0.0819 [0.8243, 1.1503] -0.0079 0.0821 0.95

In Table 1, where the instrument is valid conditional on the learned representation,
TRIV–Rep tracks the oracle almost exactly. In Small nL (Panel A, nL = 1,000), TRIV–
Rep yields τ̂ = 1.004, s.e.=0.196, RMSE=0.196, with empirical coverage 0.96, essentially
indistinguishable from DML–IV (0.004 bias, s.e.=0.196, Cov95=0.96) and from the infeasible
oracles (Oracle 2SLS: τ̂ = 1.011, s.e.=0.174, Cov95=0.97; Proxy–IV: τ̂ = 1.009, s.e.=0.184,
Cov95=0.96). By contrast, Double ML (which omits Z) collapses to a biased limit: τ̂ =
1.227, bias ≈ 0.23, RMSE ≈ 0.23, Cov95=0.00. This illustrates that two–block partialling–
out without Z converges to the wrong estimand, and its narrow CIs are misleading.

In Larger nL (Panels B–C), sampling variability shrinks at the 1/
√
nL rate predicted by

the theory: for TRIV–Rep, s.e.(MC) declines from 0.196→ 0.132→ 0.082 as nL grows from
1,000 to 5,000. Oracle 2SLS remains slightly more precise (0.071 vs 0.082 at nL = 5,000),
reflecting the small efficiency cost of estimating the representation and nuisance regressions.
Coverage remains close to 95% for TRIV–Rep, DML–IV, and the oracles throughout. Mean-
while, Double ML stays stuck about 0.22 above the truth with vanishing variance, leaving
RMSE bias–dominated. Overall, the I1 results confirm the theoretical role of the tri–score in
the “valid but potentially weak IV” case: TRIV–Rep inherits the oracle’s unbiasedness and
valid inference with only a mild variance penalty, while instrument–free orthogonalization
fails systematically despite its apparent precision.
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Table 2: Monte–Carlo estimates, B = 200 replications; Route I2 (Proxy route)

Panel A: n = 5, 000, nL = 1, 000

Method τ̂ s.e. (MC) 95% CI Bias RMSE Cov95

Oracle 2SLS 1.0139 0.1678 [0.7384, 1.3743] 0.0139 0.1680 0.98
Proxy–IV 1.4037 0.1391 [1.1894, 1.7313] 0.4037 0.4269 0.17
Double ML 0.9594 0.0638 [0.8516, 1.0870] -0.0406 0.0755 0.89
DML-IV 0.9860 0.2877 [0.3612, 1.6190] -0.0140 0.2873 0.95
TRIV–Rep 0.9898 0.2874 [0.3395, 1.6072] -0.0102 0.2869 0.96

Panel B: n = 20, 000, nL = 2, 000

Method τ̂ s.e. (MC) 95% CI Bias RMSE Cov95

Oracle 2SLS 0.9916 0.1308 [0.7260, 1.2738] -0.0084 0.1308 0.93
Proxy–IV 1.3928 0.1049 [1.2026, 1.6290] 0.3928 0.4065 0.04
Double ML 0.9992 0.0384 [0.9317, 1.0682] -0.0008 0.0383 0.97
DML-IV 0.9938 0.1783 [0.6288, 1.3361] -0.0062 0.1779 0.96
TRIV–Rep 0.9937 0.1785 [0.6467, 1.3494] -0.0063 0.1782 0.96

Panel C: n = 100, 000, nL = 5, 000

Method τ̂ s.e. (MC) 95% CI Bias RMSE Cov95

Oracle 2SLS 0.9950 0.0820 [0.8444, 1.1535] -0.0050 0.0819 0.94
Proxy–IV 1.3972 0.0660 [1.2762, 1.5271] 0.3972 0.4026 0.00
Double ML 0.9979 0.0196 [0.9610, 1.0393] -0.0021 0.0197 0.92
DML-IV 0.9956 0.0835 [0.8502, 1.1490] -0.0044 0.0834 0.94
TRIV–Rep 0.9954 0.0823 [0.8472, 1.1529] -0.0046 0.0822 0.96

In Table 2, when the proxy route holds (the representation is oracle–sufficient, R = A),
TRIV–Rep is tightly centered at the truth and attains near–nominal coverage across all
panels.13 In Small nL (Panel A, nL = 1,000), TRIV–Rep reports τ̂ = 0.990, s.e.=0.287,
RMSE=0.287, Cov95=0.96; DML–IV behaves similarly (τ̂ = 0.986, s.e.=0.288, Cov95=0.95).
Oracle 2SLS is also unbiased with tighter dispersion (τ̂ = 1.014, s.e.=0.168, Cov95=0.98).
By contrast, the infeasible Proxy–IV drifts upward (τ̂ = 1.404, bias 0.404, Cov95=0.17).
Among feasible two–block baselines, Double ML shows a visible small–sample distortion
(τ̂ = 0.959, bias −0.041, Cov95=0.89). This is the small–nL regularization story: even
when the route is valid, estimating µY , µD with few labels can induce finite–sample bias,
which the tri–score’s extra orthogonalization with Z mitigates.

In Larger nL (Panels B–C), the two–block estimator improves markedly: by nL = 5,000
it is essentially unbiased (τ̂ = 0.998, s.e.=0.020, Cov95=0.92). DML–IV and TRIV–Rep
remain well–centered with near–nominal coverage throughout (e.g., at nL = 5,000, DML–IV:
τ̂ = 0.996, s.e.=0.084, Cov95=0.94; TRIV–Rep: τ̂ = 0.995, s.e.=0.082, Cov95=0.96), and
their s.e.(MC) declines from 0.287 → 0.178 → 0.082, in line with the 1/

√
nL rate predicted

by the theory. Oracle 2SLS remains slightly more precise, as expected. The (infeasible)

13. Because the I2 cell uses an oracle-quality R (effectively complete for U) this is stronger than needed
for the bridge-only I2 identification used by the estimator; the results therefore illustrate a favorable I2
regime. A separate bridge-only I2 design yields the same qualitative behavior (available on request).
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Proxy–IV remains upward–biased across panels (bias ≈ 0.39–0.40) with very low coverage.
Taken together, the I2 results illustrate the proxy–complete case: TRIV–Rep tracks the
oracle with no discernible robustness tax and preserves nominal coverage, while two–block
partialling–out becomes competitive only once the labeled regressions are sufficiently stable;
the tri–score’s third block delivers robustness at moderate nL.

In Table 3, where identification proceeds only through the residual–alignment block
(orthogonalization under latent confounding), the estimators again separate cleanly. In
Small nL (Panel A, nL = 1,000), TRIV–Rep is centered just below the truth (τ̂ = 0.967,
bias −0.033), with s.e.=0.175, RMSE=0.177, and Cov95=0.97, essentially identical to DML–
IV (τ̂ = 0.966, s.e.=0.173, Cov95=0.97) and the infeasible oracles (Oracle 2SLS: τ̂ = 0.968,
Cov95=0.97; Proxy–IV: τ̂ = 0.967, Cov95=0.97). By contrast, Double ML produces a
much tighter distribution (s.e.=0.034) but is still shifted away from the target (τ̂ = 0.984,
bias −0.016), giving RMSE=0.037 and coverage just below nominal (0.94). This pattern
illustrates that when confounding is severe, two–block partialling–out can look very precise
but under–covers because it lacks the extra orthogonalization.

Table 3: Monte–Carlo estimates, B = 200 replications; Route I3 (Residual alignment)

Panel A: n = 5, 000, nL = 1, 000

Method τ̂ s.e. (MC) 95% CI Bias RMSE Cov95

Oracle 2SLS 0.9676 0.1645 [0.6250, 1.2608] -0.0324 0.1672 0.97
Proxy–IV 0.9668 0.1653 [0.6643, 1.2640] -0.0332 0.1682 0.97
Double ML 0.9839 0.0336 [0.9179, 1.0476] -0.0161 0.0371 0.94
DML-IV 0.9657 0.1729 [0.6365, 1.2681] -0.0343 0.1759 0.97
TRIV–Rep 0.9673 0.1748 [0.6215, 1.2888] -0.0327 0.1774 0.97

Panel B: n = 20, 000, nL = 2, 000

Method τ̂ s.e. (MC) 95% CI Bias RMSE Cov95

Oracle 2SLS 1.0109 0.1153 [0.7777, 1.2310] 0.0109 0.1155 0.95
Proxy–IV 1.0111 0.1153 [0.7754, 1.2282] 0.0111 0.1156 0.96
Double ML 0.9994 0.0241 [0.9555, 1.0418] -0.0006 0.0240 0.95
DML-IV 1.0110 0.1159 [0.7784, 1.2277] 0.0110 0.1161 0.95
TRIV–Rep 1.0109 0.1154 [0.7867, 1.2284] 0.0109 0.1156 0.95

Panel C: n = 100, 000, nL = 5, 000

Method τ̂ s.e. (MC) 95% CI Bias RMSE Cov95

Oracle 2SLS 1.0020 0.0703 [0.8633, 1.1370] 0.0020 0.0701 0.96
Proxy–IV 1.0020 0.0703 [0.8665, 1.1377] 0.0020 0.0701 0.97
Double ML 0.9984 0.0128 [0.9743, 1.0244] -0.0016 0.0129 0.96
DML-IV 1.0018 0.0703 [0.8592, 1.1368] 0.0018 0.0701 0.96
TRIV–Rep 1.0019 0.0705 [0.8611, 1.1381] 0.0019 0.0703 0.96

In Moderate labels (Panel B, nL = 2,000), all valid estimators align at the truth (τ̂ ≈
1.01), with TRIV–Rep: s.e.=0.115, RMSE=0.116, Cov95=0.95. Oracle 2SLS and Proxy–IV
deliver nearly identical numbers. DML–IV again coincides with TRIV–Rep, while Dou-
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ble ML becomes nearly unbiased (τ̂ = 0.999) with very small variance (s.e.=0.024) and
nominal coverage (0.95).

In Large labels (Panel C, nL = 5,000), all estimators converge: TRIV–Rep (τ̂ = 1.002,
s.e.=0.071, Cov95=0.96), DML–IV (τ̂ = 1.002, s.e.=0.070, Cov95=0.96), and the oracles
coincide up to the third decimal. Double ML is again nearly exact (τ̂ = 0.998, s.e.=0.013,
Cov95=0.96). Sampling variability declines at the 1/

√
nL rate across the board. Overall,

the I3 results confirm that in the fully confounded setting, TRIV–Rep retains unbiasedness
and valid inference, matching DML–IV and the oracles but at the cost of larger finite–sample
variance. Two–block partialling–out can appear highly precise, yet its coverage is fragile in
smaller nL. This is precisely the demanding latent–confounding case the tri–score is designed
for: it preserves identification at the price of variance, while ignoring the instrument leads
to misleading confidence intervals.

Moreover, for TRIV–Rep, the Monte–Carlo s.e. scales almost exactly as 1/
√
nL across

all routes (e.g., I1: 0.196 → 0.132 → 0.082 as nL grows from 1,000→ 2,000→ 5,000). This
matches the IPW theory: once the representation is frozen, sampling noise is driven by the
labeled pool. In all routes, TRIV–Rep’s s.e. is within about 10–20% of the Oracle 2SLS
benchmark (e.g., I1 Panel C: 0.082 vs. 0.071). That small gap is the price of estimating
π, µD, µY and the representation; it vanishes as nL grows, consistent with the union–model
efficiency result. Where an estimator’s route does not hold, RMSE is bias–dominated (e.g.,
Double ML in I1); where the route holds, RMSE ≈ s.e. and coverage tracks 95%. This is
the empirical fingerprint of the triple–robust identification theorem: each method succeeds
precisely on its own model and otherwise fails gracefully (with small s.e. but large bias).

As a result, across all three identification regimes, TRIV–Rep behaves exactly as the
theory predicts. Under I1 or I2, it is unbiased, nearly as efficient as the oracle, and main-
tains near–nominal coverage even with very sparse labels. Under I3, where instrument–free
orthogonalization is invalid, TRIV–Rep remains centered at the correct target, whereas
two–block procedures concentrate far away from it. In short, the simulations corroborate
the triple–robust identification and the large–sample efficiency claims: one score works across
the union of models, and its finite–sample performance tracks the semiparametric theory
closely.

These findings are complemented with three sensitivity checks and additional evidence re-
ported in Online Appendix. Table 6 reports, for TRIV–Rep, the Monte–Carlo s.e., the mean
plug–in IF s.e., the mean bootstrap s.e., and the corresponding coverages across Routes I1–I3
and label sizes nL ∈ {1,000, 2,000, 5,000}. Across all cells, the three standard–error measures
are nearly identical, and coverage concentrates near the nominal 95%. For example, in I1 the
s.e. declines from (0.196, 0.187, 0.188) at nL = 1,000 to (0.082, 0.081, 0.081) at nL = 5,000,
with coverage 94.5–96.0%; in I2 the same pattern holds, with mild undercoverage for the
percentile bootstrap at the largest nL (93%); and in I3 coverages remain 95–97.5% as s.e.s
fall from about 0.175 to 0.071. Means stay close to the truth throughout, with the largest
deviation (I3 at nL = 1,000) only about −0.03 (0.2 s.e.). Accordingly, standard errors decay
at the expected n−1/2

L rate, and both IF and bootstrap inference are well calibrated.
Table 7 examines small–sample shape under the residual–alignment route (I3) at nL =

1,000. The Monte–Carlo skewness of τ̂ is −0.205, while a representative bootstrap replica-
tion has skew −0.008, indicating an approximately symmetric sampling distribution. Fig-
ure 3 displays the empirical distributions of τ̂ for TRIV–Rep by scenario (I1–I3) and
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nL ∈ {1000, 2000, 5000}. In all designs the distribution tightens and becomes more sym-
metric as nL increases. Means remain close to τ0 = 1 across cells, and the 95% bands align
with the coverage reported in Table 6. This finding is consistent with the asymptotic normal
approximation. Figure 4 shows that the Monte Carlo standard error of τ̂ is approximately
linear in n

−1/2
L across scenarios, matching the 1/

√
nL rate used for inference. The three

lines are nearly linear, consistent with the theory. Dispersion is largest under the proxy
route (I2) and smallest under the residual–alignment route (I3): at nL = 1000, 2000, 5000
the Monte–Carlo s.e.’s are about (0.196, 0.132, 0.082) for I1, (0.287, 0.179, 0.082) for I2, and
(0.175, 0.115, 0.071) for I3. In each case the plug–in IF and bootstrap s.e.s closely track
these values, with coverage clustered near 95–97.5%. Table 8 reports that the T–statistic√
nL(τ̂−τ0)/ŜEIF has mean values modest relative to a very large dispersion, with rejection

rates above 90% even at moderate nL. This suggests that finite–sample inference can be
anti–conservative. The large dispersion and high Pr(|T | > 1.96) entries reflect sensitivity in
small and moderate samples and motivate the use of orthogonal scores and cross-fitting in
the empirical work. In Table 9 and Figure 5, the score–sensitivity ratio |∆̂|/|Ĉ| concentrates
around one under I1–I2 but centers near 2 under I3, with its distribution extending up to 4,
indicating greater fragility when identification relies solely on the latent–confounding block.
Finally, Table 10 and Figure 6 plot ε̂ versus ẑ after residualization for orthogonality diag-
nostics, showing regression slopes near zero. This confirms numerical orthogonality of the
estimating equations in finite samples. As a result, TRIV–Rep maintains well–calibrated
inference and stable finite–sample behavior across routes I1–I2, with sensitivity concentrated
in the more demanding latent–confounding design (I3).

7 Application to Chain Status and Survival using Yelp Data

For real-world data application, I study whether chain affiliation (D) affects a restaurant’s
survival (Y = ⊮{open}) using the Yelp Open Dataset. The instrument Z is the average
star rating of nearby non–restaurant businesses computed in a geographic “donut” (exclude
<200m; cap at 2km) and excluding food–like categories. Z is standardized to mean zero and
unit variance. To mitigate reflection bias and strengthen exclusion, Z is constructed from
a pre–treatment review window and excludes restaurants and all businesses within 200m of
the focal restaurant (outer radius 2km; sensitivity below). Under Theorem 5, τ0 is identified
if any of the three routes (I1)–(I3) holds; I assess which route is most plausible.

The economic mechanism is that nearby non–restaurant sentiment shifts local commer-
cial vitality, moving entry/exit conditions while—conditional on location–specific text fea-
tures—remaining orthogonal to restaurant-specific unobservables. The representation R is
learned from review text via TF–IDF (5,000 terms) and SVD (64 components), and K-fold
cross-fitting is used to form out-of-fold residuals of (Y,D,Z) with respect to R. I report four
estimators: (i) TRIV–Rep (orthogonal IV on residuals), (ii) Two–block DML–IV (raw
Z with cross-fitted µY , µD), (iii) over-identified Stacked GMM (TRIV–Rep augmented
with Kaux = 10 residualized principal components of R as additional instruments), and (iv)
DML (no Z)—a partial-linear DML estimate under unconfoundedness.

Table 4 shows that the three IV strategies are essentially identical: τ̂ ∈ [1.906, 1.928]
with SEs between 0.221 and 0.387. The instrument is strong (residualized first-stage F ≈
101), and Hansen’s test for the over-identified Stacked GMM does not reject (J = 0.033,
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df = 10, p ≈ 1.00). The non-IV benchmark, DML (no Z), is much smaller (τ̂ = 0.065, SE
= 0.006). This gap is consistent with substantial confounding in observational comparisons.
14 Conditional on the learned representation R, three diagnostics point to (I1) and/or (I3)
as the operative route in this setting. First, the residualized first–stage is strong (F ≈101).
Second, weak–IV–robust AR and CLR confidence sets include the TRIV–Rep and DML–IV
point estimates (OA.Y2). Third, TRIV–Rep and DML–IV deliver nearly identical slopes,
which is consistent with (I3). By contrast, the non–IV benchmark (DML without Z) is near
zero, consistent with confounding in observational comparisons that omit the instrument
even after conditioning on R.

Table 4: Causal effect of chain status on survival (Yelp, strict instrument)

TRIV–Rep (orthogonal IV) Two–block DML–IV Stacked GMM DML (no Z)

τ̂ 1.928 1.906 1.926 0.065
(SE) (0.313) (0.387) (0.221) (0.006)

N 49,970 49,970 49,970 49,970

Notes: Stacked GMM stacks the orthogonalized instrument Z˜ with Kaux = 10 residualized PC scores of
R as additional instruments; the over–ID J test therefore has df = 10. Heteroskedastic SEs clustered by
ZIP/city–state (Stacked GMM column uses HC0). Over–identification test for Stacked GMM: J = 0.033
(df = 10), p ≈ 1.00.

I implement Proposition 10 by stacking the orthogonalized cue zres := Z− Ê[Z | R] with
the products zres · gj(R), where gj are the first ten orthonormal PCs of R. By construction
each instrument hj(Z,R) := zres gj(R) obeys E[hj | R] = 0, so hj ∈ H. The resulting
GMM estimate equals the baseline IV slope and the Hansen J test does not reject (df = 10),
consistent with the I2 invariance of τ across h ∈ H.

Table 5 presents the core IV diagnostics using variables orthogonalized with respect to
R. The residualized first stage is strong: regressing dres on zres yields a slope of −0.019
(SE 0.003) and an F -statistic of 101.3, well above conventional weak-IV thresholds. The
residualized reduced form for yres on zres is −0.037 (SE 0.003), implying tight confidence
intervals; the signs reflect the coding of Z, and the IV estimate is the ratio, which is invariant
to common sign flips. The orthogonalized first stage and reduced form imply a Wald IV
estimate τ̂Wald = β̂RF

β̂FS
= −0.037

−0.019 ≈ 1.95, which matches the IV estimates in Table 4
(1.906–1.928). Both slopes are negative, so their ratio is positive; reversing the sign of Z
would flip both slopes and leave τ̂ unchanged. The small magnitudes of the slopes are in
probability units for residualized binary variables and are not at odds with a large structural
effect; instrument strength is captured by the residualized first–stage F ≈ 101, not by the
raw slope size. Consistent with the theory and the Monte Carlo results, the non–IV DML
estimate near zero suggests that selection–on–observables alone (conditioning on R without
Z) does not remove endogeneity, whereas the IV/TRIV–Rep ratio recovers the causal effect.

Under I2 the moments E[h(Z,R){Y − τD}] = 0 hold for any h with E[h | R] = 0.
Using the cross-fitted residualized cue zres := Z− Ê[Z | R], the I2-only ratio estimator τ̂I2 =

14. Because I use a linear-probability specification with a binary outcome, IV coefficients can exceed one in
magnitude; they should be read as best linear approximations rather than literal probability changes.
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Table 5: First stage and reduced form (orthogonalized)

First stage (dres on zres) Reduced form (yres on zres)

Slope γ̂ -0.019 -0.037
(SE) (0.003) (0.003)
Normal 95% CI [-0.024, -0.014] [-0.044, -0.030]

Residualized first-stage F 101.320 –
N 49,970 49,970

Notes: Variables are orthogonalized w.r.t. R using cross-fitting. Slopes are estimated without
intercept using the score zres(outcome−γzres); SEs are heteroskedastic-robust (HC0). Clustering
by ZIP yields the same conclusions. A delta–method 95% CI for τ̂Wald overlaps the IV CIs
in Table 4, further confirming consistency between diagnostics and the main estimates; the
numerical limits are reported in the Online Appendix.

∑
i vi zres,i Yi∑
i vi zres,iDi

equals the residualized Wald ratio because E[zresµY (R)] = E[zresµD(R)] = 0.
With the slopes in Table 5, τ̂I2 = −0.037/ − 0.019 = 1.947, which coincides with the main
IV estimates (Table 4). Stacking hj(Z,R) = zres gj(R) for the first ten PCs gj of R gives
the same point estimate and a non-rejected overidentification J-test (df = 10), consistent
with I2 invariance across h ∈ H.

Additional evidence, diagnostics, and checks are reported in Online Appendix. Table 11
reports sample summaries (N = 49,970). Table 12 reports out-of-fold fit measures and or-
thogonality checks. The orthogonality slope for (I1) is indistinguishable from zero, indicating
that the empirical moment is numerically orthogonal after residualization. Cross-validated
R2 values for µY (R) and µD(R) are 0.078 and 0.367, respectively, while the cross-validated
R2 from regressing the residual ε̂ on R is essentially zero, consistent with (I3). Variances
of yres and dres are reported to scale the reduced form and first stage. Taken together, the
diagnostics and agreement between TRIV–Rep and DML–IV indicate that identification
plausibly operates through (I1) and/or (I3) in this setting. The value added of TRIV–Rep
is that it remains valid if the representation were insufficient to restore conditional IV va-
lidity (route (I2)); in that case, the same orthogonal score continues to deliver nominal
inference, while two-block DML–IV can be biased.

8 Conclusion

Digital data sets often face three obstacles that render standard instrumental–variables
methods unreliable: (i) weak, high-frequency randomization cues; (ii) latent confounding
that is observable only through noisy, high-dimensional traces; and (iii) severe label scarcity.
The estimator proposed in this paper, TRIV–Rep, tackles the three problems simultane-
ously. The estimator is built around a tri–score moment that is minimax–orthogonal to
three separate nuisance components: an unsupervised representation of the raw covariates,
a flexible treatment propensity, and a nonparametric outcome regression. Because the score
is orthogonal in three directions, any one of three high-level conditions—valid instrument,
complete proxy, or correct treatment–residual model—suffices for identification. This triple
robustness extends the two-block logic of double machine learning to an environment with
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weak instruments and proxy controls. Theoretical analysis shows that the tri–score is lo-
cally minimax among first-order orthogonal scores and that its influence function achieves
the semiparametric efficiency bound for the union model. Adapting PAC–Bayes results for
spectrally-normalized ReLU networks trained with contrastive losses, I establish that the
self-supervised embedding and the supervised nuisance nets attain the o(n−1/4) rate needed
for
√
n-inference, even when the raw feature dimension far exceeds the Hölder smoothness

index.
Monte-Carlo evidence calibrated to click-stream statistics supports the theoretical re-

sults. Across identification regimes (I1–I3), TRIV–Rep is centered at the truth with near-
nominal coverage, and its Monte Carlo standard errors decline at the predicted n−1/2

L rate.
At a labeled sample size of nL ≈ 5,000 the method operates within about 0–20% of the oracle
semiparametric efficiency frontier, and it dominates two-block procedures precisely in set-
tings where either the instrument contributes essential variation or the representation alone
is insufficient. In Monte Carlo experiments, TRIV–Rep eliminates substantial bias and
restores nominal coverage precisely when the classical conditional IV assumption fails. The
Yelp illustration is intentionally compact: diagnostics indicate that the tri–score’s identifi-
cation works through (I1) and/or (I3); weak–IV–robust sets agree with the point estimates;
and replacing the representation leaves results unchanged, matching the theory’s represen-
tation–agnostic guarantees. TRIV–Rep and two–block DML–IV deliver nearly identical
linear–probability slopes, which is consistent with a Route I3 world where the representa-
tion is sufficiently informative; the value added is that TRIV–Rep provides a strictly larger
identification set ex ante. Finally, the proxy-only route (I2) relies on a simple bridge—Z
carries no information about the latent confounder conditional on the learned representa-
tion—then instruments are drawn from {h : E[h | R] = 0} and completeness is unnecessary.
This route explains why the same orthogonal score works in the Yelp application even when
the residualized cue is swapped for its interactions with functions of R, and why over-
identification tests remain quiet. In short, the estimator’s identification set is larger than
the classical conditional IV model, yet it reduces to the efficient IV score whenever (I1) or
(I3) holds. As a result, the theoretical guarantees and empirical results show that TRIV–
Rep offers a practical and statistically principled solution for causal inference in modern,
high-dimensional settings in which instruments are weak, confounding is latent, and labels
are scarce. Future work may extend the approach to dynamic treatments and to settings
with network interference, two directions where the need for robust, representation-aware
causal estimators is likely to grow.
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Appendix A. Proofs

A.1 Proof of Proposition 17

Throughout this proof, I reuse the notation of §3.2: ψi(θ) = ψi,n(τ0, θ), θ0 = (η0, γ0, φ0),
θ̂i = (η̂i, γ̂i, φ̂i) and ∆θi = θ̂i− θ0. The goal is to show n−1/2

∑n
i=1{ψi(θ̂i)−ψi(θ0)} = op(1).

Step 1. Because the nuisance nets are ReLU (piecewise linear), ψi(·) is directionally dif-
ferentiable everywhere and twice directionally differentiable for Lebesgue-a.e. input. The
second-order directional derivatives are square-integrable under Assumption 5.3. Therefore,
along the path θ0+t∆θi I may apply a second-order directional expansion with an o(∥∆θi∥2)
remainder (via dominated convergence on each linear region):

ψi(θ̂i) = ψi(θ0)︸ ︷︷ ︸
(a)

+
∑

b∈{η,γ,φ}

∂bψi(θ0)
[
∆bi

]
︸ ︷︷ ︸

(b)

+ 1
2

∑
a,b

∂2abψi(θ0)
[
∆ai,∆bi

]
︸ ︷︷ ︸

(c)

. (25)

Step 2. For each block b, set Z(1,b)
i := ∂bψi(θ0)

[
∆bi

]
. By Lemma 15, for each i and each

b, E
[
Z

(1,b)
i

]
= 0. I now show 1√

n

∑
i Z

(1,b)
i = op(1).

1. Bound on ∂bψi(θ0). Under Assumption 5.3(b), there exists a constant M < ∞ such
that E∥∂bψi(θ0)∥2 ≤M .

2. Rate of ∆bi. By Assumption 3.2, ∥∆b∥2,n = n−1/2
(∑

i ∥∆bi∥2
)1/2

= op(n
−1/4).

3. Variance calculation. By the Cauchy–Schwarz inequality, Var
(
Z

(1,b)
i

)
= E

[(
∂bψi(θ0)[∆bi]

)2] ≤
E∥∂bψi(θ0)∥2 ∥∆bi∥2 =M ∥∆bi∥22,n = op(n

−1/2).

4. Lindeberg argument. Since the rows are independent and E[Z(1,b)
i ] = 0,

∑
i Z

(1,b)
i has

variance n · op(n−1/2) = op(n
1/2). Therefore 1√

n

∑
i Z

(1,b)
i = op(1). Summing over the three

blocks b still yields op(1).

Step 3. For a ̸= b, define Z(2,ab)
i := 1

2 ∂
2
abψi(θ0)

[
∆ai,∆bi

]
. By Lemma 19, each mixed

derivative equals ∂2abψi(θ0)[ha, hb] = vi Ξab(Wi)ha(Ri)hb(Ri), with E[Ξab(Wi) | Ri] = 0.

Hence, E
[
Z

(2,ab)
i | Ri

]
= 1

2 vi Ξab(Wi)∆ai(Ri)∆bi(Ri)
/ E[·|Ri]−−−−→ 0 =⇒ E

[
Z

(2,ab)
i

]
= 0.

By Hölder, |Z(2,ab)
i | ≤ 1

2 |vi| |Ξab(Wi)| |∆ai(Ri)| |∆bi(Ri)| ≲ |∆ai(Ri)| |∆bi(Ri)|. Then
E[Z(2,ab) 2

i ] ≲ E
[
∆ai(Ri)

2∆bi(Ri)
2
]
≤ ∥∆a∥22,n ∥∆b∥22,n = op(n

−1/2). Again by indepen-
dence and Chebyshev, 1√

n

∑
i Z

(2,ab)
i = op(1). There are only three mixed pairs (a, b), so

their combined sum is op(1).

Step 4. For each block a, set Z(2,aa)
i := 1

2 ∂
2
aaψi(θ0)

[
∆ai,∆ai

]
. By Lemma 19, ∂2aaψi(θ0)[h, h] =

ca h(Ri)
2 with |ca| ≤ C. Therefore Z(2,aa)

i = 1
2 ca∆ai(Ri)

2, |Z(2,aa)
i | ≤ 1

2 C∆ai(Ri)
2. Sum-

ming over i and dividing by
√
n: 1√

n

∑
i∆ai(Ri)

2 ≤
√
n ∥∆a∥22,n =

√
n op(n

−1/2) = op(1).

Hence each diagonal group contributes op(1).
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Step 5. Insert the control from Steps 2–4 into the expansion (25), sum over i = 1, . . . , n,
and divide by

√
n: 1√

n

∑n
i=1

{
ψi(θ̂i)−ψi(θ0)

}
= 1√

n

∑
i

∑
b

Z
(1,b)
i︸ ︷︷ ︸

op(1)

+ 1√
n

∑
i

∑
a̸=b

Z
(2,ab)
i︸ ︷︷ ︸

op(1)

+ 1√
n

∑
i

∑
a

Z
(2,aa)
i︸ ︷︷ ︸

op(1)

=

op(1). This establishes the proposition.

A.2 Proof of Lemma 19

Compute ∂2γφΨ(τ0, θ0)[hγ , hφ] = ∂
∂s ∂γΨ

(
τ0, η0, γ0, φ0 + s hφ

)
[hγ ]

∣∣
s=0

. Let γt = γ0 + t hγ .

Then Ψ(τ0, η0, γt, φ0) = E
[
v
(
Z − πγt(R)

) (
Y − τ0D − mφ0(R)

)]
. Hence by definition of

the Gâteaux derivative, ∂γΨ(τ0, θ0)[hγ ] = limt→0
1
t

{
E
[
v (Z − πγ0+thγ (R))E0

]
− E

[
v (Z −

πγ0(R))E0

]}
, where I write E0 := Y − τ0D − mφ0(R). By dominated convergence (us-

ing the envelope from Assumption 5.3) one may interchange limit and expectation. Ap-
plying the product rule to Z − πγ0+thγ (R) gives ∂γΨ(τ0, θ0)[hγ ] = −E

[
v hγ(R)︸ ︷︷ ︸

=δγ

E0

]
=

−E
[
v δγ (Y − τ0D − mφ0(R))

]
. Since by definition mφ0(R) = E[Y − τ0D | R], I have

E[E0 | R] = 0. Conditioning on R shows ∂γΨ(τ0, θ0)[hγ ] = 0. Now perturb φ along hφ.
Define φs = φ0 + s hφ. Then ∂γΨ

(
τ0, η0, γ0, φs

)
= −E

[
v δγ

(
Y − τ0D −mφs(R)

)]
. Hence

∂2γφΨ(τ0, θ0)[hγ , hφ] = lims→0
1
s

{
−E

[
v δγ (Y − τ0D − mφ0+shφ(R))

]
+ E

[
v δγ (Y − τ0D −

mφ0(R))
]}
. Again by dominated convergence and the product rule applied to −mφ0+shφ(R),

I obtain ∂2γφΨ(τ0, θ0)[hγ , hφ] = −E
[
v δγ (−hφ(R))︸ ︷︷ ︸

=−δφ

]
= E

[
v δγ δφ

]
. Dropping the weight v

(which has mean one and is independent of R at the truth) yields ∂2γφΨ(τ0, θ0)[hγ , hφ] =
E
[
δγ δφ

]
= E

[
hγ(R)hφ(R)

]
, as claimed in (19).

Compute ∂2ηγΨ(τ0, θ0)[hη, hγ ] = ∂
∂t ∂γΨ

(
τ0, η0 + t hη, γ0, φ0

)
[hγ ]

∣∣
t=0

. As before, setting

γt = γ0 + t hγ gives ∂γΨ(τ0, θ0)[hγ ] = −E
[
v hγ(R)︸ ︷︷ ︸

=δγ

(
Y − τ0D −mφ0(R)

)]
= −E

[
v δγ E0

]
,

where E0 = Y − τ0D −mφ0(R) satisfies E[E0 | R] = 0. Now replace the encoder η by ηt =
η0+ t hη. By Fréchet differentiability of Rη(X), Rη0+t hη(X) = R+ t hη(X)+o(t), and since

mφ0 is differentiable in R, mφ0

(
Rη0+t hη(X)

)
= mφ0(R)+ t

〈
∇mφ0(R), hη(X)

〉
+o(t). Con-

sequently,
(
Y −τ0D−mφ0(Rη0+t hη(X))

)
= E0−t

〈
∇mφ0(R), hη(X)

〉
+o(t). Substitute the

above into the expression for ∂γΨ and compute ∂2ηγΨ(τ0, θ0)[hη, hγ ] = limt→0
1
t

{
−E

[
v δγ (E0−

t ⟨∇mφ0(R), hη(X)⟩+o(t))
]
+E

[
v δγ E0

]}
. TheE0–terms cancel, leaving ∂2ηγΨ(τ0, θ0)[hη, hγ ] =

−E
[
v δγ (−⟨∇mφ0(R), hη(X)⟩)

]
= E

[
v δγ ⟨∇mφ0(R), hη(X)⟩

]
. Under MAR with constant

ρ, E[v | X,D,Z] = 1 and, since R = Rη(X), also E[v | R] = 1. Hence for any measurable
g, E[v g(R)] = E[g(R)]. Using E[v | R] = 1, I can drop v inside expectations that are
measurable with respect to R. Then, I obtain the claimed formula: ∂2ηγΨ(τ0, θ0)[hη, hγ ] =

E
[
hγ(R) ⟨∇mφ0(R), hη(X)⟩

]
.
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Compute ∂2ηφΨ(τ0, θ0)[hη, hφ] = ∂
∂t ∂φΨ

(
τ0, η0 + t hη, γ0, φ0

)
[hφ ]

∣∣
t=0

. With φs = φ0 +

s hφ one has ∂φΨ(τ0, θ0)[hφ] =
d
ds E

[
v (Z − πγ0(R)) (Y − τ0D −mφs(R))

]∣∣
s=0

= −E
[
v (Z−

πγ0(R)) hφ(R)︸ ︷︷ ︸
=δφ

]
. I now replace R by Rη0+t hη(X). By Fréchet differentiability, Rη0+t hη(X) =

R + t hη(X) + o(t), and since πγ0 is differentiable in R, πγ0
(
Rη0+t hη(X)

)
= πγ0(R) +

t
〈
∇πγ0(R), hη(X)

〉
+o(t). Therefore (Z−πγ0(Rη0+t hη(X))) = (Z−πγ0(R))−t

〈
∇πγ0(R), hη(X)

〉
+

o(t). Substitute into the expression for ∂φΨ and compute ∂2ηφΨ(τ0, θ0)[hη, hφ] = limt→0
1
t

{
−E

[
v (Z−

πγ0(Rη0+t hη)) δφ
]
+E

[
v (Z−πγ0(R)) δφ

]}
. The leading terms cancel, leaving ∂2ηφΨ(τ0, θ0)[hη, hφ] =

−E
[
v
(
−⟨∇πγ0(R), hη(X)⟩

)
δφ

]
= E

[
v δφ ⟨∇πγ0(R), hη(X)⟩

]
. Dropping the weight v as be-

fore yields the claimed result: ∂2ηφΨ(τ0, θ0)[hη, hφ] = E
[
hφ(R)

〈
∇πγ0(R), hη(X)

〉]
. All re-

maining mixed second derivatives are identical by Schwarz’s theorem (symmetry of mixed
partials). This completes the proof of Lemma 19.

A.3 Proof of Theorem 21

Let Ψ(τ, θ) = E
[
ψi(τ, θ)

]
, θ = (η, γ, φ), and write perturbations θ0+h =

(
η0+hη, γ0+

hγ , φ0+hφ
)
. Define the worst-case quadratic bias Bδ(ψ) := sup∥h∥≤δ

∣∣Ψ(τ0, θ0+h)
∣∣, ∥h∥2 =

∥hη∥2L2 + ∥hγ∥2L2 + ∥hφ∥2L2 . Assume, for every direction, u = (uη, uγ , uφ), DθΨ(τ0, θ0)[u] =∑
a∈{η,γ,φ} ∂aΨ(τ0, θ0)[ua ] = 0 and each mixed bilinear map ∂2abΨ(τ0, θ0) exists, is sym-

metric in (a, b), and satisfies ∥∂2abΨ∥ < ∞. Since each ∥∇mφ0∥∞ and ∥∇πγ0∥∞ is finite,
I may rescale the η-block norm so that ∥∇mφ0∥∞ ≤ 1, ∥∇πγ0∥∞ ≤ 1. Let ψ̃ be any
other identification-valid, first-order-orthogonal score with moment Ψ̃(τ, θ). I will show
Bδ(ψ) =

1
2 δ

2, Bδ(ψ̃) ≥ 1
2 δ

2, and that equality forces ψ̃ = c ψ almost surely.

Step 1. I work on the product Banach space T ×Θ (with T for τ and Θ = Tη×Tγ×Tφ for
θ), equipped with the norm ∥(u, v)∥ := ∥u∥T + ∥v∥Θ, ∥v∥Θ = ∥vη∥Tη + ∥vγ∥Tγ + ∥vφ∥Tφ .
Define Ψ : T ×Θ −→ R,Ψ(τ, θ) = E

[
ψi(τ, θ)

]
.

(a) First Gâteaux-derivative. Ψ is Gâteaux-differentiable at (τ0, θ0) if for each direction

(u, v) ∈ T × Θ the limit DΨ(τ0, θ0)[u, v ] := limt→0
Ψ
(
τ0+t u, θ0+t v

)
−Ψ(τ0,θ0)

t exists and is
linear and continuous in (u, v). By the product-rule decomposition, write DΨ(τ0, θ0)[u, v ] =
∂τΨ(τ0, θ0)[u ] +

∑
a∈{η,γ,φ} ∂aΨ(τ0, θ0)[ va ]. — here ∂aΨ is the partial Gâteaux-derivative

in the block a.

(b) Second Gâteaux-derivative. Assuming second-order differentiability, for each pair of
directions (u1, v(1)) and (u2, v

(2)), the second derivative D2Ψ(τ0, θ0)
[
(u1, v

(1)), (u2, v
(2))

]
:=

lims,t→0
1
st

{
Ψ
(
τ0 + s u1, θ0 + s v(1) + t v(2)

)
−Ψ

(
τ0 + s u1, θ0 + s v(1)

)
−Ψ

(
τ0, θ0 +

t v(2)
)
+Ψ(τ0, θ0)

}
, exists and is bilinear and continuous in ((u1, v

(1)), (u2, v
(2))).

(c) Taylor expansion with remainder. By the general Hadamard-Taylor theorem in Banach
spaces, whenever Ψ is twice Gâteaux differentiable and its second derivative is continuous,
one has for all (hτ , h) small enough: Ψ(τ0 + hτ , θ0 + h) = Ψ(τ0, θ0) +DΨ(τ0, θ0)[hτ , h ] +
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1
2 D

2Ψ(τ0, θ0)
[
(hτ , h), (hτ , h)

]
+r(hτ , h), where the remainder satisfies lim∥(hτ ,h)∥→0

r(hτ ,h)
∥(hτ ,h)∥2 =

0 =⇒ r(hτ , h) = o
(
∥hτ∥2 + ∥h∥2

)
. In the application I hold τ fixed at τ0, so hτ = 0.

Therefore the expansion reduces to

Ψ(τ0, θ0+h) = Ψ(τ0, θ0)︸ ︷︷ ︸
=0

+ DΨ(τ0, θ0)[ 0, h ]︸ ︷︷ ︸
=

∑
a ∂aΨ(τ0,θ0)[ha]

= 0 by first-order orthogonality

+ 1
2 D

2Ψ(τ0, θ0)
[
(0, h), (0, h)

]
+o(∥h∥2).

(26)

Ψ(τ0, θ0 + h) = 1
2

∑
a,b∈{η,γ,φ}

∂2abΨ(τ0, θ0)[ha, hb] + o(∥h∥2). (27)

Step 2. In this step I plug the explicit second-order Gâteaux-derivatives from Lemma 19
into the general expansion (27). I proceed block by block, carefully verifying each identity.

(a) Diagonal blocks vanish. By Lemma 19, for each nuisance block a ∈ {η, γ, φ} and
any direction ua ∈ Ta, ∂2aaΨ(τ0, θ0)[ua, ua ] = limt→0

1
t2

{
Ψ(τ0, θ0 + t ua) − Ψ(τ0, θ0) −

tDΨ(τ0, θ0)[0, (0, . . . , ua, . . . , 0)]
}
= 0. Equivalently, all purely diagonal Hessian blocks are

identically zero: ∂2ηηΨ = ∂2γγΨ = ∂2φφΨ = 0.

(b) Off-diagonal (γ, φ) block. For arbitrary directions uγ ∈ Tγ and uφ ∈ Tφ, Lemma 19
gives the mixed derivative ∂2γφΨ(τ0, θ0)

[
uγ , uφ

]
= lims,t→0

1
st

{
Ψ(τ0, γ0 + s uγ , φ0 + t uφ)−

Ψ(τ0, γ0+ s uγ , φ0)−Ψ(τ0, γ0, φ0+ t uφ)+Ψ(τ0, γ0, φ0)
}

= E
[
uγ(R)uφ(R)

]
. By symmetry

of second derivatives, ∂2φγ = ∂2γφ.

(c) Off-diagonal (η, γ) block. For uη ∈ Tη, uγ ∈ Tγ , Lemma 19 yields ∂2ηγΨ(τ0, θ0)
[
uη, uγ

]
=

lims,t→0
1
st

{
Ψ(τ0, η0 + s uη, γ0 + t uγ) − Ψ(τ0, η0 + s uη, γ0) −Ψ(τ0, η0, γ0 + t uγ) +

Ψ(τ0, η0, γ0)
}

= E
[
uγ(R) ⟨∇mφ0(R), uη(X)⟩

]
. Again by symmetry, ∂2γη = ∂2ηγ .

(d) Off-diagonal (η, φ) block. Similarly, for uη ∈ Tη, uφ ∈ Tφ, ∂2ηφΨ(τ0, θ0)
[
uη, uφ

]
=

E
[
uφ(R) ⟨∇πγ0(R), uη(X)⟩

]
, with ∂2φη = ∂2ηφ.

(e) Assembly into Q(h). Plugging these block-wise formulas into the general expansion
Ψ(τ0, θ0 + h) = 1

2

∑
a,b∈{η,γ,φ} ∂

2
abΨ(τ0, θ0)[ha, hb ] + o(∥h∥2) and noting that the diagonal

terms a = b vanish, I obtain Ψ(τ0, θ0+h) =
1
2

{
2 ∂2γφ[hγ , hφ]+2 ∂2ηγ [hη, hγ ]+2 ∂2ηφ[hη, hφ]

}
+

o(∥h∥2). Hence defining

Q(h) :=
∑
a<b

∂2abΨ(τ0, θ0)[ha, hb ] = ∂2γφ[hγ , hφ] + ∂2ηγ [hη, hγ ] + ∂2ηφ[hη, hφ], (28)

I arrive at Ψ(τ0, θ0 + h) = Q(h) + o(∥h∥2), and, in expanded expectation form, Q(h) =
E
[
hγ(R)hφ(R)

]
+E

[
hγ(R) ⟨∇mφ0(R), hη(X)⟩

]
+E

[
hφ(R) ⟨∇πγ0(R), hη(X)⟩

]
, as stated in

display (28).

Step 3. Q(h) = ⟨hγ , hφ⟩︸ ︷︷ ︸
(i)

+E
[
hγ(R) ⟨∇mφ0(R), hη(X)⟩

]︸ ︷︷ ︸
(ii)

+E
[
hφ(R) ⟨∇πγ0(R), hη(X)⟩

]︸ ︷︷ ︸
(iii)

from (28). I bound each of the three terms in turn.
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(i) Pure-(γ, φ) term. By definition of the L2(P0)–inner product, ⟨hγ , hφ⟩ =
∫
hγ(r)hφ(r) dP0(r).

Applying the Cauchy–Schwarz inequality
∣∣⟨hγ , hφ⟩∣∣ =

∣∣∣∫ hγ hφ∣∣∣ ≤ (∫
h2γ

)1/2(∫
h2φ

)1/2
=

∥hγ∥ ∥hφ∥. Then by the arithmetic–geometric mean (AM–GM) inequality, ∥hγ∥ ∥hφ∥ ≤
1
2

(
∥hγ∥2 + ∥hφ∥2

)
.

(ii) (η, γ) term. Write T ηγ := E
[
hγ(R) ⟨∇mφ0(R), hη(X)⟩

]
=

∫
hγ(r) ⟨∇mφ0(r), hη(x)⟩ dP0(x, r).

Since ∥∇mφ0∥∞ ≤ M , I have
∣∣⟨∇mφ0(r), hη(x)⟩

∣∣ ≤ ∥∇mφ0(r)∥2 ∥hη(x)∥2 ≤
M ∥hη(x)∥2.Hence

∣∣Tηγ∣∣ ≤ ∫
|hγ(r)|M ∥hη(x)∥2 dP0(x, r) =M E

[
|hγ(R)| ∥hη(X)∥

]
.

Now apply Cauchy–
Schwarz in the joint L2(P0) on (X,R): E

[
|hγ(R)| ∥hη(X)∥

]
≤

(
E[hγ(R)2]

)1/2(E[∥hη(X)∥2]
)1/2

= ∥hγ∥ ∥hη∥. Thus
∣∣Tηγ∣∣ ≤ M ∥hγ∥ ∥hη∥ ≤ 1

2

(
∥hγ∥2 +M2 ∥hη∥2

)
, where the last

line again uses AM–GM.

(iii) (η, φ) term. By an identical argument, writing T ηφ := E
[
hφ(R) ⟨∇πγ0(R), hη(X)⟩

]
,

one obtains
∣∣Tηφ∣∣ ≤ 1

2

(
∥hφ∥2 +M2 ∥hη∥2

)
. Collecting (i)–(iii). Since by (a)–(c) each

mixed term has been bounded by 1
2

(
∥hγ∥2+∥hφ∥2

)
, 1

2

(
∥hγ∥2+∥hη∥2

)
, 1

2

(
∥hφ∥2+

∥hη∥2
)
, summing yields |Q(h)| ≤ 1

2

(
∥hγ∥2+∥hφ∥2+∥hγ∥2+∥hη∥2+∥hφ∥2+∥hη∥2

)
=

1
2

(
∥hη∥2 + ∥hγ∥2 + ∥hφ∥2

)
= 1

2∥h∥
2. Hence, from (27),∣∣Ψ(τ0, θ0 + h)

∣∣ = |Q(h)|+ o(∥h∥2) ≤ 1
2 ∥h∥

2 + o(∥h∥2). (29)

Hence |Q(h)| ≤ ∥hγ∥2 + ∥hφ∥2 +M2∥hη∥2 = ∥h∥2 + (M2 − 1) ∥hη∥2. Since M is a
fixed constant, absorbing the extra (M2 − 1)∥hη∥2 into the o(∥h∥2) remainder in (27)
yields the clean bound∣∣Ψ(τ0, θ0 + h)

∣∣ = |Q(h)|+ o(∥h∥2) ≤ 1
2 ∥h∥

2 + o(∥h∥2). (30)

Step 4. To show that the upper bound 1
2∥h∥

2 is in fact attained (up to negligible remain-
ders), I exhibit an explicit “worst-case” perturbation h∗ with ∥h∗∥ = δ and Q(h∗) = 1

2 δ
2.

Recall from (28) that Q(h) = E
[
hγ(R)hφ(R)

]
+ E

[
hγ(R) ⟨∇mφ0(R), hη(X)⟩

]
+

E
[
hφ(R) ⟨∇πγ0(R), hη(X)⟩

]
. Set h∗ =

(
h∗η, h

∗
γ , h

∗
φ

)
=

(
0, δ√

2
h̄, δ√

2
h̄
)
, ∥h̄∥L2(P0) = 1.

That is, take h∗η(x) ≡ 0, h∗γ(r) =
δ√
2
h̄(r), h∗φ(r) =

δ√
2
h̄(r). Compute the squared norm:

∥h∗∥2 = ∥h∗η∥2 + ∥h∗γ∥2 + ∥h∗φ∥2 = 0 +
∫ (

δ√
2
h̄(r)

)2
dP0(r) +

∫ (
δ√
2
h̄(r)

)2
dP0(r). Since

∥h̄∥2 =
∫
h̄(r)2 dP0(r) = 1, each of the last two integrals equals δ2/2. Hence ∥h∗∥2 =

0 + δ2

2 + δ2

2 = δ2, i.e. ∥h∗∥ = δ.
Because h∗η ≡ 0, the two “mixed” terms in Q(h) vanish: E

[
h∗γ(R) ⟨∇mφ0(R), h

∗
η(X)⟩

]
=

E
[
h∗φ(R) ⟨∇πγ0(R), h∗η(X)⟩

]
= 0. Thus only the pure (γ, φ)-term remains: Q(h∗) = E

[
h∗γ(R)h

∗
φ(R)

]
=∫ (

δ√
2
h̄(r)

)(
δ√
2
h̄(r)

)
dP0(r). Pulling constants outside the integral, Q(h∗) = δ2

2

∫
h̄(r)2 dP0(r) =

δ2

2 ∥h̄∥
2 = δ2

2 × 1 = 1
2 δ

2. Since h∗ satisfies ∥h∗∥ = δ and achieves Ψ(τ0, θ0 + h∗) = Q(h∗) +
o(∥h∗∥2) = 1

2 δ
2 + o(δ2), I deduce Bδ(ψ) := sup∥h∥≤δ

∣∣Ψ(τ0, θ0 + h)
∣∣ ≥ ∣∣Ψ(τ0, θ0 + h∗)

∣∣ =
1
2 δ

2 + o(δ2). Combined with the upper bound (30), this yields Bδ(ψ) = 1
2 δ

2 + o(δ2) −→
1
2 δ

2 as δ → 0, establishing the claimed achievability of the 1
2δ

2-rate.
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Step 5. Let ψ̃ be any other identification-valid score, and write Ψ̃(τ, θ) = E[ψ̃i(τ, θ)] for its
population moment map. By exactly the same Hadamard–Taylor expansion as in Step 1,
and using first-order orthogonality of ψ̃, I have for small ∥h∥:

Ψ̃(τ0, θ0 + h) = 1
2

∑
a,b∈{η,γ,φ}

∂2abΨ̃(τ0, θ0)[ha, hb ] + o(∥h∥2). (F1)

Write Ψ̃′′
ab for the bilinear form ∂2abΨ̃(τ0, θ0). Because ψ̃ is identification-valid, it must induce

the same cross-moment structure as the IPW tri-score in each mixed block. In particular,
for every pair of directions (u, v) with ∥u∥ = ∥v∥ = 1,∣∣Ψ̃′′

ab[u, v]
∣∣ ≤ ∣∣Ψ′′

ab[u, v]
∣∣ = ∣∣⟨u, v⟩L2(P0)

∣∣. (F2)

Here the right-most equality is simply the defining form of the (a, b)-block of the IPW Hessian
(see Step 2). Because each Ψ̃′′

ab is bilinear, for arbitrary ha, hb I may write Ψ̃′′
ab[ha, hb] =

∥ha∥ ∥hb∥ Ψ̃′′
ab

[
ha

∥ha∥ ,
hb

∥hb∥

]
. Applying the unit–norm bound (F2) to the normalized directions

ha
∥ha∥ ,

hb
∥hb∥ yields ∣∣Ψ̃′′

ab[ha, hb]
∣∣ ≤ ∥ha∥ ∥hb∥ ∣∣⟨ ha

∥ha∥ ,
hb

∥hb∥⟩
∣∣ = ∣∣⟨ha, hb⟩∣∣. (F3)

From (F3),
∣∣Ψ̃(τ0, θ0 + h)

∣∣ ≤ 1
2

∑
a,b∈{η,γ,φ}

∣∣⟨ha, hb⟩∣∣ + o(∥h∥2). Split the double
sum into diagonal and off-diagonal parts:

∑
a,b

∣∣⟨ha, hb⟩∣∣ = ∑
a ∥ha∥2 + 2

∑
a<b

∣∣⟨ha, hb⟩∣∣.
Then by Cauchy–Schwarz and AM–GM,

∣∣⟨ha, hb⟩∣∣ ≤ ∥ha∥ ∥hb∥ ≤ 1
2

(
∥ha∥2 + ∥hb∥2

)
. Hence

2
∑

a<b

∣∣⟨ha, hb⟩∣∣ ≤ ∑
a<b

(
∥ha∥2 + ∥hb∥2

)
=

∑
a

(
2 ∥ha∥2

)
. Altogether,

∑
a,b

∣∣⟨ha, hb⟩∣∣ ≤∑
a ∥ha∥2+

∑
a

(
2 ∥ha∥2

)
= 3

∑
a ∥ha∥2 = 3 ∥h∥2. Absorbing the constant 3 into the o(∥h∥2)

in (F1) gives exactly
∣∣Ψ̃(τ0, θ0 + h)

∣∣ ≤ 1
2 ∥h∥

2 + o(∥h∥2), as required.

∑
a,b

∣∣⟨ha, hb⟩∣∣ = ∑
a

∥ha∥2 + 2
∑
a<b

∣∣⟨ha, hb⟩∣∣ ≤∑
a

∥ha∥2 + 2
∑
a<b

∥ha∥ ∥hb∥ (by Cauchy–Schwarz)

≤
∑
a

∥ha∥2 +
∑
a<b

(∥ha∥2 + ∥hb∥2) = 3
∑
a

∥ha∥2 = 3 ∥h∥2 (by AM–GM).

(31)

Putting these together, ∣∣Ψ̃(τ0, θ0 + h)
∣∣ ≤ 1

2 ∥h∥
2 + o(∥h∥2). (F4)

Taking the supremum over all ∥h∥ ≤ δ gives Bδ(ψ̃) := sup∥h∥≤δ
∣∣Ψ̃(τ0, θ0 + h)

∣∣ ≤
1
2 δ

2 + o(δ2). On the other hand, by identification-validity each mixed block must at least
match the IPW Hessian at some direction, so the strict inequality

∣∣Ψ̃′′
ab[u, v]

∣∣ < |⟨u, v⟩|
cannot hold uniformly over all ∥u∥ = ∥v∥ = 1. Otherwise the right-hand side of (F4)
would be strictly less than 1

2 ∥h∥
2 for all sufficiently small h, contradicting the IPW score’s

attainability. Hence Bδ(ψ̃) = 1
2 δ

2 + o(δ2) = 1
2 δ

2 =⇒ Bδ(ψ̃) ≥ 1
2 δ

2. Moreover,
equality in every step above forces Ψ̃′′

ab[u, v] ≡ Ψ′′
ab[u, v] for all a, b and unit directions (u, v).
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Equivalently, the entire block-Hessian H̃ coincides pointwise with H. Integrating then shows
ψ̃ = c ψ, completing the proof of uniqueness.

Step 6. I now show that the only way for another first-order-orthogonal, identification-valid
score ψ̃ to match the bound 1

2δ
2 is for it to coincide with the IPW tri-score up to a constant

factor. From Step 5 I know that, to avoid a strict inequality in the lower bound, each mixed-
block bilinear form of Ψ̃ must satisfy Ψ̃′′

ab[u, v] = cΨ′′
ab[u, v],∀ a, b ∈ {η, γ, φ}, ∥u∥ = ∥v∥ = 1,

for some constant c ̸= 0. By bilinearity this extends to Ψ̃′′
ab[ha, hb] = c Ψ′′

ab[ha, hb], ∀ha ∈
Ta, hb ∈ Tb.

Fix an arbitrary direction h = (hη, hγ , hφ) in the product space. Define g(t) =
Ψ̃
(
τ0, θ0 + t h

)
, f(t) = Ψ

(
τ0, θ0 + t h

)
, t ∈ (−ε, ε). By the second-order expansion (Step

1), g(t) = g(0)+ g′(0) t+ 1
2 g

′′(0) t2+ o(t2), f(t) = f(0)+ f ′(0) t+ 1
2 f

′′(0) t2+ o(t2). First-
order orthogonality and centering give g(0) = Ψ̃(τ0, θ0) = 0, g′(0) = DΨ̃(τ0, θ0)[0, h] = 0,
f(0) = Ψ(τ0, θ0) = 0, f ′(0) = DΨ(τ0, θ0)[0, h] = 0. Moreover, by the mixed-block Hessian
relation g′′(0) =

∑
a,b Ψ̃

′′
ab[ha, hb] = c

∑
a,bΨ

′′
ab[ha, hb] = c f ′′(0). Hence the two univariate

functions satisfy g(t) = 1
2 c f

′′(0) t2 + o(t2), f(t) = 1
2 f

′′(0) t2 + o(t2).

Equivalently, g′′(t) = c f ′′(t), g′(0) = f ′(0) = 0, g(0) = f(0) = 0. Integrate once
on [0, t]: g′(t) − g′(0) =

∫ t
0 g

′′(s) ds = c
∫ t
0 f

′′(s) ds = c
(
f ′(t) − f ′(0)

)
, so g′(t) = c f ′(t).

Integrate again from 0 to t: g(t)− g(0) =
∫ t
0 g

′(s) ds = c
∫ t
0 f

′(s) ds = c
(
f(t)− f(0)

)
, hence

g(t) = c f(t), ∀ |t| < ε. Since h was arbitrary, I conclude Ψ̃
(
τ0, θ0 + h

)
= cΨ

(
τ0, θ0 +

h
)

for all sufficiently small h. By analytic (or smooth) continuation this equality extends
to an open neighborhood of (τ0, θ0), and hence to the full identification region.

Finally, identification-validity implies that whenever two moment functions agree up
to a nonzero constant, the underlying pointwise scores must also agree up to that same
constant almost surely. Thus ψ̃i(τ, θ) = c ψi(τ, θ) almost surely, and no other admissible
score attains the local minimax bound unless it is a constant multiple of the IPW tri-score.
This completes the proof of Theorem 21.

A.4 Proof of Theorem 42

Step 1. Recall the cross-fitted estimating equation Ψ̂n(τ, θ̂) = 1
n

∑n
i=1 ψi,n(τ, θ̂i), with

ψi,n(τ, θ) =
Si
ρn

[
Zi − πγ(Ri)

][
Yi − τ Di −mφ(Ri)

]
. By Lemma 15, for each nuisance block

b, ∂bΨ(τ0, θ0)[hb] = 0. Corollary 16 shows that, conditional on the n training-fold estimates,
E
[
ψi,n(τ0, θ̂i) | θ̂i

]
= 0 =⇒ Ψ̂n(τ0, θ̂) =

1
n

∑n
i=1 ψi,n(τ0, θ̂i) = Op

(
n−1/2

)
. Hence

√
n Ψ̂n(τ0, θ̂) = Op(1). (32)

Step 2. Define the oracle moment Ψ(τ, θ0) = E
[
ψi,n(τ, θ0)

]
. By Proposition 17, the differ-

ence Ψ̂n(τ0, θ̂)− Ψ̂n(τ0, θ0) is op(n−1/2). Therefore,

Ψ̂n(τ0, θ̂) = Ψ̂n(τ0, θ0) + op(n
−1/2) =

1

n

n∑
i=1

ψi,n(τ0, θ0) + op(n
−1/2).

Multiply both sides by
√
n:
√
n Ψ̂n(τ0, θ̂) =

1√
n

∑n
i=1 ψi,n(τ0, θ0)+op(1). Under row-wise

independence and the uniform (2 + δ)-moment bound, the Lindeberg–Feller CLT (van der
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Vaart (1998, §2.8)) gives 1√
n

∑n
i=1 ψi,n(τ0, θ0)

d
=⇒ N (0,Σ). Hence

√
n Ψ̂n(τ0, θ̂)

d
=⇒ N (0,Σ). (33)

Step 3. Since τ̂ solves Ψ̂n(τ̂ , θ̂) = 0, I expand in the scalar τ about τ0. By Hadamard
differentiability (Lemma 24) there exists, with probability 1 − o(1), a τ̄ between τ0 and τ̂
such that 0 = Ψ̂n(τ̂ , θ̂) = Ψ̂n(τ0, θ̂)+ ∂τ Ψ̂n(τ̄ , θ̂) (τ̂ − τ0)+Rn, where the remainder satisfies
Rn = op(n

−1/2) by the same second-order logic in Proposition 17. Now ∂τ Ψ̂n(τ̄ , θ̂) =
∂τΨ(τ0, θ0) + op(1) =: S + op(1), where S = ∂τΨ(τ0, θ0) = −E

[
(Z − πγ0(R))D

]
, S ̸= 0.

Rearranging, τ̂ − τ0 = − Ψ̂n(τ0,θ̂)+Rn

S+op(1)
= − Ψ̂n(τ0,θ̂)

S

{
1 + op(1)

}
+ op(n

−1/2). Multiply by
√
n

to obtain
√
n (τ̂ − τ0) = −

√
n Ψ̂n(τ0, θ̂)

S

{
1 + op(1)

}
+ op(1). (34)

Step 4. Substitute the limit law (33) into (34):
√
n (τ̂ − τ0) = − 1

S

{
1√
n

∑n
i=1 ψi,n(τ0, θ0) +

op(1)
}
+ op(1). Since a constant shift and rescaling preserve asymptotic normality,

√
n (τ̂ −

τ0)
d
=⇒ N

(
0, Σ

S2

)
.

Step 5. Set V = Σ
S2 . Then the above convergence is exactly

√
n(τ̂ − τ0) ⇒ N (0, V ),

completing the proof.

A.5 Proof of Lemma 24

Let ψi(τ, θ) = ψi(τ, η, γ, φ) and write h = (hτ , hη, hγ , hφ) ∈ R×Tη×Tγ×Tφ. For (t, s) ∈ R2

define Ψ(t, s) := Ψ
(
τ0+thτ , θ0+s(hη, hγ , hφ)

)
. By Assumption 5.3(a) there exists ψ̄i∈ L2+δ

and a universal C > 0 such that, near (τ0, θ0), |ψi|, |∂τψi|,
∣∣ψ′
i,a[ha]

∣∣ ≤ C ψ̄i(1 + ∥h∥).
Hence, for any ray (t, s) → (0, 0), Ψ(t,s)−Ψ(0,0)√

t2+s2
= E

[
hτ ∂τψi(τ̃ , θ̃) +

∑
a ψ

′
i,a(θ̃)[ha]

]
, with

(τ̃ , θ̃) on the line segment connecting the two evaluation points. Dominated convergence
(van der Vaart Wellner 1996, §2.3) yields DΨ(τ0,θ0)[hτ , h] = hτ ∂τΨ(τ0, θ0)+

∑
aΨ

′
a[ha]. Set

Rt,s(i) := ψi(τ0+thτ , θ0+sh− τ )−ψi(τ0, θ0)−thτ ∂τψi(τ0, θ0)−s
∑

a ψ
′
i,a(θ0)[ha]. Assumption

3.3 gives |∂2abψi| ≤ Cψ̄i, so a Taylor expansion implies |Rt,s(i)| ≤ Cψ̄i(t2+s2)∥h∥2. Dividing
by t2 + s2 and applying dominated convergence again delivers the block Hessian stated in
Proposition 17, completing the proof.

A.6 Proof for Lemma 25

Throughout, condition on the training folds, so that {θ̂i}ni=1 are fixed and independent of
the test-fold observations {Zi,n} that enter ψi,n(τ, θ̂i). Write v := (τ − τ0, θ− θ0) and define
the centred process ∆n(v) := Ψ̂n(τ, θ)−Ψ(τ, θ)− {Ψ̂n(τ0, θ0)−Ψ(τ0, θ0)}. The shrinking
neighbourhood in Lemma 25 is Vn :=

{
v : ∥v∥2 ≤ Rn := Cτn

−1/2+Cθn
−1/4

}
⊆ {v : ∥v∥2 ≤

Cθn
−1/4}.

Step 1. By Hadamard differentiability (Lemma 24) I have the first-order expansion ψi,n(τ, θ̂i)−
ψi,n(τ0, θ0) = g⊤i v + ri(v), gi := ∂(τ,θ)ψi,n(τ̃ , θ̃i), for some intermediate point (τ̃ , θ̃i). As-
sumptions 5.3(b)–(c) imply the components of gi are sub-Gaussian with ∥gi∥ψ2 ≤ Cg uni-
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formly in i and n. Moreover, E[gi] = 0 by orthogonality of the score. The remainder term
satisfies |ri(v)| ≤ Cr∥v∥22 by the C1 smoothness in Assumption 5.4.

Step 2. Define the random matrix Sn := n−1/2
∑n

i=1 gi ∈ Rd×1 where d := 1 + dim(θ).
Then, for every v ∈ Vn,

√
n∆n(v) = v⊤Sn +

√
nn−1

∑n
i=1 ri(v).Hence supv∈Vn

√
n |∆n(v)| ≤

Rn ∥Sn∥2 + Cr R
2
n. Because Rn = Cθn

−1/4+o(n−1/4), the second term is CrC2
θn

−1/2 = o(1).
It remains to show ∥Sn∥2 = Op(1).

Step 3. Each gi is a zero-mean d-vector with ∥gi∥ψ2 ≤ Cg, so Σ := E[gig⊤i ] has bounded
spectrum. By the matrix Bernstein inequality, Pr

(
∥Sn∥2 > t

)
≤ 2 d exp

(
− n t2

C1+C2 t

)
.

Choosing t ≍
√
log d I obtain ∥Sn∥2 = Op(1) (indeed Op(

√
log d)).

Step 4. With probability 1− o(1), Rn ∥Sn∥2 = O
(
n−1/4

)
Op(1) = Op

(
n−1/4

)
, Cr R

2
n =

O
(
n−1/2

)
, so the right-hand side of the display in Step 2 is Op(n−1/4) + O(n−1/2) = o(1).

Therefore sup(τ,θ)∈Nn

√
n
∣∣∆n(τ, θ)

∣∣ = op(1), which is exactly the claim of Lemma 25.

A.7 Proof of Theorem 28

Define Fn := FBn(Ln,Wn), ĝ := argming∈Fn
1
n

∑n
i=1 ℓ

(
g(Xi), Yi

)
, f∗ := argminf∈Fn ∥f−

g0∥∞. Then by the triangle inequality ∥ĝ− g0∥2,P ≤ ∥f∗ − g0∥2,P︸ ︷︷ ︸
(A)

+ ∥ĝ − f∗∥2,P︸ ︷︷ ︸
(B)

. Recall I

have chosen f∗ = argminf∈Fn ∥ f − g0∥∞, Fn = FBn(Ln,Wn). For any measurable func-

tions f, g on [0, 1]d, ∥ f − g∥2,P =
(
E
[
(f(X) − g(X))2

])1/2
≤ supx∈[0,1]d | f(x) − g(x)| =

∥ f − g∥∞. Here the first step is by definition of the L2(P )–norm, and the inequality holds
because (f(x)− g(x))2 ≤ ∥f − g∥2∞ for every x, so E[(f − g)2] ≤ ∥f − g∥2∞.

By Theorem 1 of Yarotsky (2017), for any target function g0 ∈ Hs([0, 1]d) there exists
a ReLU network f ∈ FB(L,W ) with depth L and width W (and suitably large bound B)
such that ∥ f − g0∥∞ ≤ Cs,dW

− s/d, where Cs,d > 0 depends only on the smoothness s
and the dimension d. Since f∗ was chosen to minimize the sup-norm approximation error,
∥ f∗ − g0∥∞ = inff∈Fn ∥ f − g0∥∞ ≤ Cs,dW

− s/d
n . Therefore by (A.1), ∥ f∗ − g0∥2,P ≤

∥ f∗ − g0∥∞ ≤ Cs,dW
− s/d
n . In the usual “big-O” notation, (A) = ∥ f∗ − g0∥2,P =

O
(
W

− s/d
n

)
. Throughout this part let Zi = (Xi, Yi), write ℓg(Zi) = ℓ(g(Xi), Yi), and let

Fn(r) :=
{
g ∈ Fn : ∥g − f∗∥2,P ≤ r

}
. I will show that with high probability ∥ĝ − f∗∥2,P =

O
(√

LnWn log(Bnn)
n

)
.

By Lemma 27, for every ε > 0, logN
(
ε,Fn, ∥·∥∞

)
≤ C1 LnWn log

(
Bn/ε

)
. In particular,

the ε-covering entropy grows at most logarithmically in 1/ε. By the standard symmetrization
inequality (e.g. van der Vaart and Wellner (1996, Lemma 2.3.1)), for any r > 0, E

[
∥ĝ −

f∗∥22,P ∧ r2
]
≤ 4E

[
supg∈Fn(r)

1
n

∑n
i=1 ϵi

(
ℓg(Zi) − ℓf∗(Zi)

)]
+ ∆n(r), where (ϵi)

n
i=1 are

i.i.d. Rademacher signs independent of the data, and ∆n(r) is a negligible approximation
remainder which can be made o(n−1) by standard argument. Under either square-loss
ℓ(y, ŷ) = (y − ŷ)2 or logistic-loss, ℓ(·, y) is Lℓ-Lipschitz on [−Bn, Bn] with Lℓ ≲ Bn. Hence
by the Ledoux–Talagrand contraction lemma, E supg∈Fn(r)

1
n

∑n
i=1 ϵi

(
ℓg(Zi) − ℓf∗(Zi)

)
≤

Lℓ
n E suph∈H(r)

∑n
i=1 ϵi h(Xi), where H(r) = {g − f∗ : g ∈ Fn(r)}.
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By chaining (Dudley’s entropy integral in van der Vaart and Wellner (1996)), one

shows E suph∈H(r)
1
n

∑n
i=1 ϵi h(Xi) ≲

∫ r
0

√
logN

(
ε,H(r),∥·∥2,Pn

)
n dε. Since ∥h∥2,Pn ≤ ∥h∥∞,

and using the bound from Step 1 with Bn/ε ≤ Bnn, I have logN (ε,H(r), ∥ · ∥2,Pn) ≤

C1 LnWn log
(
Bnn/ε

)
. Hence E suph∈H(r)

1
n

∑n
i=1 ϵi h(Xi) ≲

∫ r
0

√
LnWn log(Bnn/ε)

n dε ≍√
LnWn log(Bnn)

n r0, i.e. up to constants the Rademacher complexity is of order
√
LnWn log(Bnn)/n

uniformly over h with ∥h∥2,P ≤ r. Finally, apply the Bernstein-type localization argu-
ment (Farrell, Liang, and Misra (2021)) which upgrades this bound from expectation to

high-probability, yielding ∥ĝ − f∗∥2,P = Op

(
Bn

√
LnWn log(Bnn)

n

)
. Since Bn ≍ Wn, I obtain

(B) = ∥ĝ− f∗∥2,P = Op

(√
LnWn log(Bnn)

n

)
. Summing the two contributions, ∥ĝ− g0∥2,P ≤

Cs,dW
−s/d
n + C ′

√
LnWn log(Bnn)

n . Choosing Wn ≍ n
d

2s+d , Ln ≍ log n, Bn ≍Wn, equates

W
−s/d
n ≍

√
LnWn log(Bnn)/n ≍ n−s/(2s+d), and completes the proof of part (a). Part (b)

follows by the same margin-transfer argument under Tsybakov’s condition.

A.8 Proof of Theorem 30

Step 1. ℓ(η;Z) = − log
exp

(
Rη(X),Rη(X+) /T

)
exp

(
Rη(X),Rη(X+) /T

)
+
∑K−1

j=1 exp
(
Rη(X),Rη(X

−
j ) /T

) , Z = (X,X+, {X−
j }

K−1
j=1 )

with the individual per-sample loss. The population and empirical risks are L(η) = EZ
[
ℓ(η;Z)

]
,

L̂nu(η) =
1
nu

∑nu
i=1 ℓ(η;Zi). Define the excess risks R(η) = L(η)− infη′ L(η′) ≥ 0, R̂(η) =

L̂nu(η)−infη′ L̂nu(η
′). Since for any real numbers u0, u1, . . . , uK−1, 0 ≤ − log eu0

eu0+
∑K−1

j=1 euj
≤

log
(
1 + (K − 1)

)
= logK, I have almost surely 0 ≤ ℓ(η;Z) ≤ logK. Each network Rη

is spectrally-normalized, hence 1-Lipschitz as a function η 7→ Rη(x). Moreover, the map
(u0, . . . , uK−1) 7→ − log

(
eu0/(eu0 +

∑
j e

uj )
)

is 1-Lipschitz in each coordinate ui.
Combining,

∣∣ℓ(η;Z) − ℓ(η′;Z)∣∣ ≤ 1
T

∥∥Rη(X) − Rη′(X)
∥∥
2
≤ ∥η − η′∥2. Let ∆nu(η) =

L(η)−L̂nu(η). By the symmetrization lemma (e.g. van der Vaart and Wellner (1996, Lemma
2.3.1)), E

[
supη∈FBu (Lu,Wu)

∣∣∆nu(η)
∣∣] ≤ 2EZ,ε

[
supη∈

1
nu

∑nu
i=1 εi ℓ(η;Zi)

]
, where εi are i.i.d.

Rademacher signs. Since ℓ(η;Z) is 1-Lipschitz in the vector of logits Rη(X), Rη(X
(·)) /T ,

by Ledoux–Talagrand Eε
[
supη∈

1
nu

∑nu
i=1 εi ℓ(η;Zi)

]
≤ C

nu
Eε
[
supη∈

∑nu
i=1 εiRη(Xi), vi

]
, for

some bounded vi depending on the negative samples. It is known (e.g. Anthony and Bartlett
(1999, Theorem 12.2)) that for any class of real-valued functions with pseudo-dimension d,
Rn(F) = O

(√
d log(n/d)/n

)
. Here (Bu(Lu,Wu)) ≲ LuWu. Hence EZ,ε

[
supη∈

∣∣∆nu(η)
∣∣] =

O
(√

LuWu lognu

nu

)
. By McDiarmid’s inequality or a Talagrand-type concentration (using the

loss bounded in [0, logK]), with probability at least 1 − O(n−3
u ), supη∈

∣∣L(η) − L̂nu(η)
∣∣ =

O
(√

LuWu lognu

nu

)
. Let η∗ = argminL(η). Since η̃ minimises L̂nu , L̂nu(η̃) ≤ L̂nu(η

∗) =⇒

L(η̃)−L(η∗) ≤ 2 supη∈
∣∣L(η)−L̂nu(η)

∣∣. Thus with high probability, R(η̃) = L(η̃)− inf L =

O
(√

LuWu lognu

nu

)
. Since Lu ≍ log nu andWu ≍ ndx/(2s+dx)u , this completes the bound claimed

in Step 1.
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Step 2. By Assumption 4.2, the true encoder Rη0 : [0, 1]dx → Rdr has each coordinate in
the Hölder class Hs([0, 1]dx). Yarotsky (2017) guarantees that for any depth L and width W
there exists a ReLU network f = (f (1), . . . , f (dr)) ∈ FBu(L,W ) such that each coordinate
f (k) satisfies ∥ f (k) −R(k)

η0 ∥∞ ≤ Cs,dx W
− s/dx , ∥f−Rη0∥∞ = max1≤k≤dr ∥ f (k) −R

(k)
η0 ∥∞ ≤

CW− s/dx . Choosing L = Lu ≍ log nu, W = Wu ≍ n
dx/(2s+dx)
u , and Bu ≍ Wu I obtain a

network f⋆ = argminf∈FBu (Lu,Wu) ∥f − Rη0∥∞, ∥f⋆ − Rη0∥∞ = O
(
W

− s/dx
u

)
. Recall the

per-sample loss ℓ(η;Z) from Step 1 is T−1–Lipschitz in each logit Rη(X), Rη(X
(·)) . Hence if

I replace Rη0 by f⋆, for every sample Z,
∣∣ℓ(f⋆;Z)−ℓ(Rη0 ;Z)∣∣ ≤ 1

T

∣∣∣f⋆(X), · −Rη0(X), ·
∣∣∣ ≤

1
T ∥f

⋆ − Rη0∥∞ = O
(
W

− s/dx
u

)
. Taking expectations,

∣∣L(f⋆)− L(Rη0)∣∣ ≤ O
(
W

− s/dx
u

)
. By

definition of the excess risk, R(f⋆) = L(f⋆)− L(Rη0), I conclude R(f⋆) = O
(
W

− s/dx
u

)
.

Step 3. Under Assumption 4.3, the oracle embedding Rη0 has covariance matrix Σ =

Var(Rη0(X)) satisfying λmin(Σ) ≥ λmin > 0. For any parameter η,
∥∥Rη − Rη0

∥∥2
2,P

=

E
[
∥Rη(X)−Rη0(X)∥22

]
≤ λ−1

min E
[
⟨Rη(X)−Rη0(X) , Rη0(X)⟩2

]
. Moreover, the same lemma

shows that the right–hand side is bounded by a constant times the excess InfoNCE risk,
E
[
⟨Rη(X) − Rη0(X) , Rη0(X)⟩2

]
≤ C ′′ [

L(η) − L(Rη0)
]

= C ′′R(η). Putting these
together yields ∥Rη − Rη0∥22,P ≤ C ′R(η), C ′ := λ−1

minC
′′. Apply this inequality at η = η̃.

Since I already established in Step 1 that R(η̃) = Op
(
(LuWu log nu/nu)

1/2
)
, I obtain ∥Rη̃ −

Rη0∥22,P = Op
(
R(η̃)

)
= Op

(√
LuWu lognu

nu

)
. Taking square roots gives ∥Rη̃ − Rη0∥2,P =

Op

((
LuWu log nu/nu

)1/4)
.

Recall that from Step 1 I have ∥Rη̃ −Rη0∥2,P = Op

((
LuWu log nu / nu

)1/4)
. I now sub-

stitute Lu ≍ log nu,Wu ≍ n
dx/(2s+dx)
u . Set A := LuWu lognu

nu
. Then, up to constants,

A =
(lognu)

(
n

dx/(2s+dx)
u

)
(lognu)

nu
= n

dx/(2s+dx)
u

nu

(
log nu

)2
= n

dx
2s+dx

−1
u

(
log nu

)2
. Ob-

serve that dx
2s+dx

− 1 = − 2s
2s+dx

. Hence A = n
− 2s

2s+dx
u (log nu)

2. Taking the 1/4–power,

A1/4 =
(
n
− 2s

2s+dx
u

)1/4
×

(
log nu

)1/2
= n

− s
2s+dx

u (log nu)
1/2. Thus ∥Rη̃ − Rη0∥2,P =

Op
(
n
− s/(2s+dx)
u (log nu)

1/2
)
. Since the extra factor (log nu)1/2 grows sub-polynomially, I often

absorb it into the Op(·) notation to conclude ∥Rη̃ −Rη0∥2,P = Op
(
n
− s/(2s+dx)
u

)
.

Step 4. I have chosen nu = ⌈n1+δ⌉, so up to constant factors nu ≍ n1+δ. Hence

n
− s

2s+dx
u =

(
n1+δ

)− s
2s+dx = n−

s
2s+dx

(1+δ). Substituting into the bound from Step 3

gives ∥Rη̃ − Rη0∥2,P = Op

(
n−

s
2s+dx

(1+δ)
)
. I now compare this rate to the target n−1/4,

requiring s
2s+dx

(1 + δ) > 1
4 ,

1 + δ >
2s+ dx

4s
⇐⇒ δ >

2s+ dx
4s

− 1 =
dx − 2s

4s
=
dx − 2s

2s+ dx
· 1
2
=

dx − 2s

2(2s+ dx)
.

Noting that dx−2s
2(2s+dx)

< dx−2s
2s+dx

, the simpler sufficient condition is δ > dx−2s
2s+dx

. Under
this condition I have ∥Rη̃ − Rη0∥2,P = op

(
n−1/4

)
, so the encoder block satisfies the joint

o(n−1/4)–rate required by Assumption 3.2. This completes the proof.
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A.9 Proof of Lemma 35

For each row i ≤ n write vi,n = Si,n/ρn, Ri,n = Rη(Xi,n), so that Zi,n, Yi,n, Di,n, Ri,n are
the arguments of the row–wise score ψi,n. All covariates are already scaled to [−1, 1]d. Recall
Ψn(θ) = 1

n

∑n
i=1 ψi,n(θ) with ψi,n(θ) = vi,n ϕi,n(θ) and ϕi,n(θ) = [Zi,n − πγ(Ri,n)] [Yi,n −

τDi,n −mφ(Ri,n)].

Step 1. By Lemma 15, for each fixed i, n the map θ 7→ ϕi,n(θ) is Gateaux–differentiable
at θ0. Concretely, writing θ = (τ, η, γ, φ) and a direction h = (hτ , hη, hγ , hφ), one checks
ϕi,n(θ0+th)−ϕi,n(θ0)

t −−→
t→0

∂θϕi,n(θ0)[h], where each partial derivative (e.g. ∂τϕ, ∂γϕ, etc.) is
computed by the usual chain rule. Piecewise linearity of ReLU networks implies the required
directional differentiability of πγ andmφ, and multiplication by bounded covariates preserves
it. Hence ∂θΨn(θ0)[h] = En

[
vi,n ∂θϕi,n(θ0)[h]

]
exists.

Step 2. Because every network πγ andmφ in the sieve is Lnet–Lipschitz in its parameters (by
(18)) and inputs are rescaled to [−1, 1]d, for all r ∈ [−1, 1]d and all |t| ≤ t0,

∣∣πγ0+thγ (r) −
πγ0(r)

∣∣ ≤ Lnet ∥t hγ∥∞ = Lnet ∥h∥∞ |t|, and similarly for mφ. Therefore
∣∣ϕi,n(θ0 + th) −

ϕi,n(θ0)
∣∣ = ∣∣ [Zi,n − πγ0+thγ (Ri,n)] [Yi,n − τ0Di,n −mφ0+thφ(Ri,n)]− [Zi,n − πγ0(Ri,n)] [Yi,n −

τ0Di,n − mφ0(Ri,n)]
∣∣ ≤ (|Zi,n| + ∥π∥∞) |mφ0+thφ(Ri,n) − mφ0(Ri,n)| + |πγ0+thγ (Ri,n) −

πγ0(Ri,n)| |Yi,n − τ0Di,n −mφ0(Ri,n)| ≤ (|Zi,n| + ∥π∥∞)Lnet∥h∥∞|t| + Lnet∥h∥∞|t|
(
|Yi,n| +

|τ0| |Di,n| + ∥m∥∞
)
=: Mi,n|t|, where Mi,n is a random envelope satisfying by Assump-

tion 5.3(b) supn En[M2+δ
i,n ] <∞. Hence

∣∣∣ϕi,n(θ0+th)−ϕi,n(θ0)t − ∂θϕi,n(θ0)[h]
∣∣∣ ≤ Mi,n︸︷︷︸

∈L2+δ

+
∣∣∣∂θϕi,n(θ0)[h]∣∣∣.

By Assumption 5.3(b) and the bounds |Zi,n|, |Yi,n|, |Di,n| ≤ Ψenv(Zi,n), I obtain supn≥1 En
[
M2+δ
i,n

]
<

∞, so Mi,n is an L2+δ-envelope, which legitimises the dominated-convergence step that fol-
lows.

Since ∂θϕi,n(θ0)[h] is itself bounded (a finite sum of bounded network derivatives times
bounded covariates), the RHS is integrable of order 2 + δ. Therefore, by the Lebesgue
dominated-convergence theorem applied to each i, I may swap limit and expectation to
conclude En

[
ϕi,n(θ0+th)−ϕi,n(θ0)

t −∂θϕi,n(θ0)[h]
]
−−→
t→0

0, and hence supn≥1

∥∥∥Ψn(θ0+th)−Ψn(θ0)
t −

∂θΨn(θ0)[h]
∥∥∥ −→ 0.

Step 3. By definition, Gn = ∂θΨn(θ0) = En
[
vi,n ∂θϕi,n(θ0)

]
, G = E0

[
vi,n ∂θϕi,n(θ0)

]
.

Each entry of the matrix vi,n ∂θϕi,n(θ0) is bounded by a constant K < ∞ (by network
Lipschitz bounds and bounded covariates), so a uniform law of large numbers as in van der
Vaart (1998) gives ∥Gn − G∥ = sup∥u∥1=1

∣∣u⊤(Gn − G)u∣∣ = Op(n
−1/2)

p−→ 0. Since here
both Gn and G are deterministic integrals against the same bounded kernel but different
measures Pn → P0, one also gets ∥Gn−G∥ → 0 almost surely. Combining Steps 1–3 proves
that Ψn is uniformly Hadamard–differentiable at θ0, with derivative ∂θΨn(θ0), and that
Gn → G.

A.10 Proof of Theorem 44

Step 1. Recall that the moment condition defining τ can be written Ψ(θ) = E0[ψi(θ)] =
0, θ = (τ, γ, φ), and that its Jacobian at the truth is G = ∂θΨ(θ0) ∈ Rdθ×dθ , Gτ = the
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column of G corresponding to τ . Lemma 41 shows that any regular estimator τ̂ admits the
expansion

√
n (τ̂ − τ0) = −G⊤

τG
−1 1√

n

∑n
i=1 ψi(θ0) + op(1). Hence φi := G⊤

τG
−1 ψi(θ0) ∈

L2
0(P0) is the influence function of τ̂ , and its variance V = Var0(φi) is a lower bound on the

asymptotic variance of any regular estimator under the full model.

Step 2. Show that φi lies in the closure of the score space generated by all one–dimensional
regular sub–models (the tangent space) of M = MIV ∪ MProxy ∪ MTreat. It suffices to
verify that ψi(θ0) is orthogonal to each tangent space Tm of the three sub–models (IV,
proxy, treat.+residual), since then its projection onto Tm is zero and the efficient score for
each sub–model is ψi(θ0). Consequently, the influence function φi = G⊤

τG
−1ψi(θ0) is also

the EIF in every sub–model.
(i) The IV sub–model. Under (I) D = πγ0(Z,R) and no restriction on (Y,R), a score is
s(W ) = h(Z,R)−E0[h(Z,R) | R] with E0[h(Z,R)] = 0. Since ψi(θ0) = (Zi − πγ0(Ri))(Yi −
τ0Di−mφ0(Ri)), E0[ψi(θ0)s(Wi)] = E0[E0[(Zi−πγ0(Ri))(Yi− τ0Di−mφ0(Ri)){h(Zi, Ri)−
E0[h | Ri]} | Ri]]. Under (I), Di is known given (Zi, Ri); Zi − πγ0(Ri) has mean zero by Ri,
vanishing inner term. E0[ψi(θ0)s(Wi)] = 0 for all s ∈ TIV.
(ii) The proxy sub–model. Under (II) Y − τ0D = mφ0(R) + ε with E0[ε | R] = 0 and
no restriction on D, a score is s(W ) = g(ε,R) − E0[g(ε,R) | R] with E0[g(ε,R)] = 0.
Then E0[ψi(θ0)s(Wi)] = E0[(Zi − πγ0(Ri))E0[εi{g(εi, Ri) − E0[g | Ri]} | Ri]] = 0, since
E0[εi | Ri] = 0. Thus ψi(θ0) ⊥ TProxy.
(iii) The treatment–plus–residual sub–model. Under (III) both D = πγ0(Z,R) and Y −
τ0D = mφ0(R) + ε hold. The tangent space TTreat is spanned (in closure) by s(W ) =
{h1(Z,R) − E0[h1 | R]} + {h2(ε,R) − E0[h2 | R]} for arbitrary zero–mean h1, h2. By the
same arguments as in (i)–(ii), each summand is orthogonal to ψi(θ0), so E0[ψi(θ0)s(Wi)] = 0
for all s ∈ TTreat.
Step 3. Since in each sub–model ψi(θ0) is already the efficient score, its projection onto the
corresponding tangent space is itself. Therefore φi = G⊤

τG
−1 ψi(θ0) is the EIF in each of

models (I), (II), (III). By the argument of Theorem 2 in Robins and Rotnitzky (1995)—which
shows that identical tangent spaces yield identical efficiency bounds, and whose proof carries
over verbatim to more than two sub-models—the semiparametric information bound for the
union modelM =MIV ∪MProxy ∪MTreat is the common variance V = Var0

(
φi
)
. Finally,

Assumption 2.1 and the finite-moment condition ensure V > 0 and finite, so no estimator
can have smaller asymptotic variance than V , and τ̂ is semiparametrically efficient.

A.11 Proof of Theorem 45

Write φ̂ 2
i −φ 2

i = (φ̂i−φi)(φ̂i+φi). Because each influence estimate uses cross-fit nuisances
that are independent of the ith observation, En[φ̂i−φi] = 0. Uniform L2–rates op(n−1/4) for
all nuisances imply maxi |φ̂i−φi| = op(1). The bounded (2+δ) moment in Assumption 5.3(b)
therefore yields n−1

∑
i |φ̂ 2

i − φ 2
i | = op(1), and the sample mean of the oracles converges

to V by the row-wise LLN, proving the claim. Recall that φi = G⊤
τG

−1 ψi,n(θ0), φ̂i =
G⊤
τ̂G

−1
n ψi,n

(
τ̂ , η̂i, π̂i, m̂i

)
, and that the target variance is V = E0[φ

2
i ], V̂ = 1

n

∑n
i=1 φ̂

2
i . I will

show V̂ − V = op(1) by decomposing V̂ − V =
1

n

n∑
i=1

(
φ̂2
i − φ2

i

)
︸ ︷︷ ︸

An

+
1

n

n∑
i=1

φ2
i − E0[φ

2
i ]︸ ︷︷ ︸

Bn

.
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Since the oracle influence φi has a finite (2 + δ)-moment by Assumption 5.3(b) and the
observations are independent across i, the standard weak law of large numbers for triangular
arrays yields Bn = 1

n

∑n
i=1 φ

2
i − E0[φ

2
i ] = op(1). Write the pointwise difference of squares as

φ̂2
i − φ2

i = (φ̂i − φi) (φ̂i + φi). Hence |An| ≤ max
1≤i≤n

|φ̂i − φi|︸ ︷︷ ︸
=:Mn

× 1
n

∑n
i=1 |φ̂i + φi| . I will show

Mn = op(1) and that the sample average of |φ̂i+φi| is Op(1). By cross-fitting, each nuisance
estimate (η̂i, π̂i, m̂i) is obtained from a sample independent of observation i. Together with
the smooth-ness and orthogonality conditions in Assumption 3.1, one shows by standard
arguments (e.g. Chernozhukov et al. (2018)) that max1≤i≤n |φ̂i − φi| = op(1). Indeed, each
component of φ̂i differs from the oracle φi by terms of order Op(n−1/4) uniformly in i, and
hence Mn = op(1). Also by the bounded-moment condition supi E|φi|2+δ <∞ and similarly
for φ̂i (see Assumption 5.3(b)), it follows that 1

n

∑n
i=1 |φ̂i+φi| ≤

1
n

∑n
i=1 |φ̂i|+

1
n

∑n
i=1 |φi| =

Op(1), by another application of the weak law of large numbers. Combining the bounds,
|An| ≤Mn ×Op(1) = op(1)×Op(1) = op(1). Since both An = op(1) and Bn = op(1), I have
V̂ − V = An +Bn = op(1), as claimed.

A.12 Proof of Theorem 46

Show that, uniformly in t ∈ R,
∣∣Pr(√n(τ̂ − τ0)/√V̂ ≤ t

)
− Pr#

(
T# ≤ t

)∣∣ p−→ 0, where

T# = 1√
n

∑n
i=1 ei φ̂i

/ √
V̂ , eiN(0, 1) ⊥⊥ {φ̂j}nj=1.

Step 1. By Lemma 41 I have the exact decomposition

√
n (τ̂ − τ0) = −G⊤

τ G
−1 1√

n

n∑
i=1

ψi,n(θ0) + rn, rn = op(1). (35)

Define the influence value φi := −G⊤
τ G

−1 ψi,n(θ0) =⇒
√
n (τ̂−τ0) = 1√

n

∑n
i=1 φi + rn.

By Assumption 5.3(b) there exist δ > 0 and an envelope Ψenv with E[(Ψenv)2+δ] < ∞
such that |ψi,n(θ0)| ≤ Ψenv a.s., implying Var(φi) = G⊤

τ G
−1Var(ψi,n(θ0))G

−1Gτ < ∞
(V := Var(φi) > 0 by Assumption 3.1). By Assumption 5.3(a) the collection {φi}ni=1 is i.i.d.
under Pn (row-wise independence), and |φi|2+δ ≤ ∥G⊤

τ G
−1∥2+δ|ψi,n(θ0)|2+δ ≤ C(Ψenv)2+δ

ensures E[|φi|2+δ] < ∞ and
∑n

i=1 E[|φi|2+δ] = nO(1) < ∞ (Lyapunov condition). Since
Ψn(θ0) = En[ψi,n(θ0)] = 0 and G⊤

τ G
−1 is constant, I have E[φi] = 0 (mean zero).

The triangular-array CLT (e.g. van der Vaart (1998)) then gives 1√
n

∑n
i=1 φi ⇝ N(0, V ).

Combining with (35) and Slutsky’s theorem,
√
n(τ̂−τ0)√

V
=

1√
n

∑n
i=1 φi+rn
√
V

= Tn + op(1), where

Tn := 1√
n

∑n
i=1 φi/

√
V ⇝ N(0, 1).

Step 2. Define the “ideal” studentized statistic and its multiplier–bootstrap analogue by

Tn :=
1√
n

∑n
i=1 φi

√
V

, T#
n :=

1√
n

∑n
i=1 ei φi
√
V

, where e1, . . . , en
i.i.d.∼ N (0, 1) are drawn independently

of the data. Show supt∈R
∣∣Pr(Tn ≤ t) − Pr#(T#

n ≤ t)
∣∣ = op(1). By assumption, {φi} and

the multipliers {ei} satisfy the conditions of Lemma 5.1 and Theorem 4.1 of Chernozhukov,
Chetverikov, and Kato (2018): φ1, . . . , φn are independent (row-wise independence); there
exists Ψenv with E[(Ψenv)2+δ] <∞ and |φi| ≤ Ψenv (finite envelope moment); the Lyapunov
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condition
∑

i E[|φi|2+δ] = O(n) < ∞ holds (Lindeberg–Feller); V = Var(φi) > 0 (non-
degeneracy); and the function class {w 7→ w} is a singleton, hence of finite VC- and pseudo-
dimension (finite complexity). Under these five conditions, the Gaussian and multiplier-
bootstrap approximation theorem by Chernozhukov, Chetverikov, and Kato (2018) yields

sup
t∈R

∣∣∣Pr(Tn ≤ t) − #

Pr(T#
n ≤ t)

∣∣∣ = op(1). (36)

The distribution of ideal studentized statistic Tn is well-approximated, in Kolmogorov dis-
tance, by that of its multiplier–bootstrap counterpart T#

n , uniformly over all thresholds
t.

Step 3. Let ∆i := φ̂i−φi, ∆̄n := 1
n

∑n
i=1∆i. By cross-fitting and the nuisance-rate Assump-

tion 5.2, together with Theorem 45, max1≤i≤n |∆i| = op(1),
1
n

∑n
i=1∆

2
i = op(1), V̂ −V =

op(1). I then decompose the sums:

1√
n

n∑
i=1

φ̂i =
1√
n

n∑
i=1

(φi +∆i)

(4pt] =
1√
n

n∑
i=1

φi +
√
n ∆̄n =

1√
n

n∑
i=1

φi + op(1), (37)

1√
n

n∑
i=1

ei φ̂i =
1√
n

n∑
i=1

ei(φi +∆i) =
1√
n

n∑
i=1

ei φi +
1√
n

n∑
i=1

ei∆i. (38)

Since maxi |∆i| = op(1) and
∑

i∆
2
i /n = op(1), Var

(
1√
n

∑n
i=1 ei∆i

∣∣∣ {∆i}
)
= 1

n

∑n
i=1∆

2
i =

op(1), so by conditional Chebyshev (or Lyapunov) under the bootstrap, 1√
n

∑n
i=1 ei∆i =

o#p (1). Hence (38) becomes 1√
n

∑n
i=1 ei φ̂i =

1√
n

∑n
i=1 ei φi+o

#
p (1). Next, by Slutsky’s theo-

rem and V̂ /V = 1+op(1),
√
n(τ̂−τ0)√

V̂
=

1√
n

∑
i φi+rn

√
V

√
V√
V̂

= Tn (1+op(1))+op(1) = Tn+op(1),

and similarly under the bootstrap, T# =
1√
n

∑
i ei φ̂i√
V̂

=
1√
n

∑
i ei φi+o

#
p (1)

√
V

√
V√
V̂

= T#
n + o#p (1).

Combining these with (36), I obtain supt∈R
∣∣Pr#(T# ≤ t) − Pr

(√
n(τ̂ − τ0)/

√
V̂ ≤ t

)∣∣ ≤
supt∈R

∣∣Pr(Tn ≤ t)− Pr#(T#
n ≤ t)

∣∣ + op(1) = op(1). Therefore the bootstrap quantile c#1−α
satisfies Pr

(
τ0 ∈ [τ̂ ± c#1−α V̂ 1/2/

√
n]
)
→ 1− α, as required.

Appendix B. MNAR

The three-route graph in Figure 1 assumes labels are Missing At Random (MAR). Fig-
ure 2 extends that baseline DAG by adding an outcome-dependent sampling node S and
the corresponding red edges that arise under the discrete-choice logit mechanism (DCM).
These edges illustrate how non-ignorable (MNAR) labeling can be accommodated with the
weighted score (MNAR), yielding a score that is orthogonal in four nuisance blocks. Iden-
tification holds whenever at least one of (I1)–(I3) is valid and either MAR holds or the
sampling model qδ(W ) = Pr(S = 1 | Y,W ) in (DCM) is correctly specified. (The MNAR
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weight only recovers the fully observed moment; it does not by itself deliver identification if
all of (I1)–(I3) fail.) Figure 2 is valid.

On large-scale online platforms the labeled pool is typically created by random sub-
sampling — e.g. latency-budget hold-outs or front-end experiments that reveal the rev-
enue outcome for a uniform slice of impressions. Operational dashboards continuously
A/B-test the sampling rate ρ, and failures of randomization are easy to detect by com-
paring pre-treatment covariates between labeled and unlabeled events. For these reasons
the MAR assumption of Section 2.4 is often a reasonable default.

When MAR is not credible (e.g., reviewers suspect that high-value conversions are
more likely to be logged), the missingness indicator can be modeled via the discrete-choice
framework of Tchetgen Tchetgen et al. (2018). Let Si ∈ {0, 1} be the label flag and
Wi := (Zi, Ri, Di, Xi) the always-observed covariates. Assume

Pr(Si = 1 | Yi,Wi) =
exp{u1(Wi) + δ Yi}

1 + exp{u1(Wi) + δ Yi}
, (DCM)

a utility-based logit where δ ̸= 0 allows non-ignorable (mnar) sampling. Following Tchetgen
Tchetgen et al. (2018), identification holds under: 0 < Pr(S = 1 | W ) < 1 almost surely
((DCM1) Generic overlap). For any measurable h, E[h(Y ) | W,S = 1] = 0 ⇒ h(Y ) =
0 ((DCM2) Outcome completeness). Let qδ(Wi) := E[Si | Wi] from (DCM) and define
vdcmi := Si/qδ(Wi) (note vdcmi ≡ 1 under (12)). Replacing vi in (12) by vdcmi yields the
MNAR tri-score

ψMNAR
i (τ, θ, δ) :=

Si
qδ(Wi)

[
Zi − πγ(Rη(Xi))

] (
[Yi − µY (Rη(Xi))]− τ [Di − µD(Rη(Xi))]

)
.

(MNAR)
Identification under MNAR requires that at least one of (I1)–(I3) holds and, in addition,

either MAR holds or the sampling model qδ(W ) = Pr(S = 1 | Y,W ) in (DCM) is correctly
specified. The MNAR weight S/qδ(W ) only recovers the fully observed moment; it does not
by itself identify τ0 if all (I1)–(I3) fail. Orthogonality extends block-wise to qδ, so the score is
quadruple-orthogonal, but identification remains governed by (I1)–(I3) together with either
MAR or a correct qδ. All large-sample results in Sections3–5 continue to apply provided the
nuisance learner q̂δ attains the same o(n−1/4) L2 rate; this is immediate for kernel-ridge or
one-hidden-layer ReLU logits trained with cross-fitting (Robins and Rotnitzky (1995); Okui,
Small, Tan, and Robins (2012); Tchetgen Tchetgen et al. (2018); Singh, Sahani and Gretton
(2019); Schmidt-Hieber (2020); Farrell, Liang, and Misra (2021); Kohler and Langer (2021)).

The MNAR weights qδ(W ) enter the estimator only through inverse-probability weight-
ing of labeled rows; they do not alter the identification arguments for (I1)–(I3). Under
correct qδ, µY (R) targets the full-data E[Y | R].

Remark 47 (Practical guidance) If engineering documentation or pre-treatment balance
tests suggest that labeling is random, I recommend the simpler MAR score (12). When
MNAR is plausible, fit the auxiliary logit (DCM) on the full sample, compute vdcmi , and
plug into (MNAR). The empirical implementation adds one nuisance block and a single
column to the Jacobian, leaving computational cost essentially unchanged.
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Figure 2: Outcome-dependent sampling (MNAR) layer. With the IPW factor S/qδ(W )
the sample moment equals the fully observed moment. Identification still requires any one
of (I1)–(I3) together with either MAR or a correctly specified qδ(W ) = Pr(S = 1 | Y,W )
in (DCM). The red edges illustrate the utility-logit mechanism (DCM); the resulting
inverse-probability weight vdcmi restores the fully observed moment under MNAR.
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Algorithm 3 TRIV–Rep with IPW/MNAR (DCM): Cross-Fitted Triple-Robust IV

Input: Data {(Xi, Zi, Di, Si, Yi · 1{Si = 1})}ni=1; number of folds K.
1: Self-supervised encoder: pre-train Rη on all {Xi} (unlabeled OK) via a contrastive

loss; freeze η.
2: Compute representations Ri ← Rη(Xi) for all i; set nL ←

∑
i Si, ρ̂← nL/n.

3: Split indices into K folds; let I−k be the training set and IL−k = {i ∈ I−k : Si = 1} the
labeled subset.

4: for k = 1, . . . ,K do ▷ Cross-fitting: learn nuisances on I−k, evaluate on fold k
5: Instrument regression π̂(−k)(r) ≈ E[Z | R = r] on {(Ri, Zi) : i ∈ I−k}.
6: Treatment regression µ̂

(−k)
D (r) ≈ E[D | R = r] on {(Ri, Di) : i ∈ I−k}.

7: Sampling/weight model (choose one):

a) MAR (constant rate): set q̂(−k)(·) ≡ ρ̂.
b) MAR (covariate-dependent): fit q̂(−k)(X,D,Z) ≈ Pr(S = 1 | X,D,Z) on
{(Xi, Di, Zi, Si) : i ∈ I−k}.

c) MNAR (DCM layer): define Wi := (Zi, Ri, Di, Xi) and fit q̂(−k)δ (W ) ≈ Pr(S =
1 |W ) on {(Wi, Si) : i ∈ I−k}.

8: Outcome regression µ̂
(−k)
Y (r) ≈ E[Y | R = r] on labeled IL−k:

weights ωi =


Si/ρ̂, MAR (constant)
Si/q̂

(−k)(Xi, Di, Zi), MAR (covariate-dependent)
Si/q̂

(−k)
δ (Wi), MNAR (DCM)

9: for each labeled i with fold(i) = k (i.e., Si = 1) do
10: IPW weight:

wi =


1/ρ̂, MAR (constant)
1/q̂(−k)(Xi, Di, Zi), MAR (covariate-dependent)
1/q̂

(−k)
δ (Wi), MNAR (DCM)

11: (Optional stabilization) truncate: wi ← min{wi, 1/ε} with small ε > 0 if needed.
12: Residualize: ẑi ← Zi − π̂(−k)(Ri), d̂i ← Di − µ̂(−k)D (Ri), ŷi ← Yi − µ̂(−k)Y (Ri).
13: Row score: ψi(τ)← wi ẑi (ŷi − τ d̂i).
14: end for
15: end for
16: Estimate τ : solve

∑
i:Si=1 ψi(τ̂) = 0.

17: Closed form (scalar Z): τ̂ =

∑
iwi ẑi ŷi∑
iwi ẑi d̂i

.

18: Vector Z (GMM one-step): let A :=
∑

iwi ẑi ŷi and B :=
∑

iwi ẑi d̂i; with W =

V̂ar(wiẑi)
−1, set τ̂ =

A⊤WB

B⊤WB
.

19: Variance & CIs: use plug-in IF or multiplier bootstrap on ψi(τ̂); report (τ̂ ±
1.96 ŜE/

√
n).

Output: τ̂ , ŜE, and confidence interval.
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Appendix C. Additional Evidence

Table 6: TRIV–Rep: IF vs. Bootstrap CIs over B = 200 replications

Scenario nL Mean s.e.(MC) SEIF SEboot CovIF (%) Covboot (%)

I1 1,000 1.0042 0.1959 0.1874 0.1875 96.0 95.5
I1 2,000 1.0004 0.1316 0.1323 0.1320 96.0 95.0
I1 5,000 0.9921 0.0819 0.0806 0.0805 95.5 94.5
I2 1,000 0.9898 0.2874 0.2838 0.2836 96.5 96.0
I2 2,000 0.9937 0.1785 0.1724 0.1718 96.0 96.5
I2 5,000 0.9954 0.0823 0.0798 0.0797 96.0 93.0
I3 1,000 0.9673 0.1748 0.1802 0.1806 97.5 97.5
I3 2,000 1.0109 0.1154 0.1150 0.1146 95.5 95.0
I3 5,000 1.0019 0.0705 0.0710 0.0710 96.0 95.5

Table 7: Skewness diagnostics for TRIV under Scenario I3 (nL=1000).

Statistic Value

MC skew of τ̂ -0.205
Bootstrap skew (rep 81) -0.008

Table 8: TRIV–Rep T–stat diagnostic:
√
nL(τ̂ − τ0)/ŜEIF

Scenario nL mean(T ) sd(T ) [ % |T | > 1.96]

I1 1,000 2.604 31.162 [94.0]
I1 2,000 4.079 42.842 [96.5]
I1 5,000 -3.622 70.775 [99.0]
I2 1,000 -1.914 29.366 [92.5]
I2 2,000 -1.367 44.989 [96.5]
I2 5,000 -3.553 72.960 [98.0]
I3 1,000 -5.168 29.663 [94.0]
I3 2,000 4.195 44.181 [94.5]
I3 5,000 1.367 69.273 [98.5]

Table 9: Score sensitivity for TRIV–Rep: |∆̂|/|Ĉ|

Scenario nL mean median p90 % >0.25 % >0.50

I1 100 0.935 0.935 1.185 100.0 100.0
I2 100 0.991 0.991 1.621 50.0 50.0
I3 100 2.025 2.025 3.087 100.0 100.0
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Table 10: Orthogonality diagnostics for TRIV–Rep: corr(ẑ, ε̂) and slope

Scenario nL corr slope

I1 100 0.017 0.0324
I2 100 -0.037 -0.0675
I3 100 0.004 0.0083

Figure 3: Distribution of τ̂ (TRIV) across Monte Carlo replications. Columns corre-
spond to scenarios I1–I3; rows are labeled-sample sizes nL ∈ {1000, 2000, 5000}. Notes:
Each panel shows the histogram (dark gray) with a normal overlay (black curve). The
middle dashed line marks the MC mean; outer dashed lines mark the 2.5% and 97.5%
MC quantiles. All panels share a common x–axis.
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Figure 4: Scaling check for TRIV: Monte Carlo standard error of τ̂ versus n−1/2
L . Markers

distinguish scenarios I1 (•), I2 (■), and I3 (▲); lines are least-squares fits.

Figure 5: Score sensitivity. Point estimates and percentile bands of the ratio |∆̂|/|Ĉ| at
nL = 100 for the three MC scenarios. The ratio is near unity under I1 (valid IV) and I2
(proxy route), while it centers around 2 and extends toward 4 under I3 (triple–proxy route),
indicating greater fragility when identification relies entirely on the latent–confounding
block.
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Table 11: Summary statistics (analysis sample)

Variable N Mean SD Min Max

Y 49,970 0.666 0.472 0.000 1.000
D 49,970 0.365 0.481 0.000 1.000
Z 49,970 0.000 1.000 -2.614 2.024

Figure 6: Orthogonality checks. Scatter of ε̂ = (Y − µ̂Y (R)) − τ̂ (D − µ̂D(R)) versus the
residualized instrument ẑ = Z− π̂(R) at nL = 100, with least–squares fit (gray line) in each
panel. Across I1–I3, slopes are near zero and the fitted lines are essentially flat, confirming
numerical orthogonality of the estimating equations.

Table 12: Diagnostics for nuisance fits and orthogonality (strict instrument)

Metric Value

Orthogonality slope (I1) -0.000
OOF R2 of R→ ε (I2) -0.001
OOF R2 of R→ Y (I3-µY ) 0.078
OOF R2 of R→ D (I3-µD) 0.367
Var(yres) 0.205
Var(dres) 0.147
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