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Abstract

Linear regression estimates of causal effects with multi-arm or continuous treat-

ments are often contaminated by weighting spillovers. We develop a unified, efficient

influence function (EIF) that eliminates this bias, synthesizing discrete and continuous

regimes. Our estimator, implemented via cross-fitted double machine learning (DML),

achieves
√
n-consistency and semiparametric efficiency. To handle weak overlap, we

introduce the Generalized Overlap Average Treatment Effect (GOATE), a trimming-

based estimand chosen via data-driven variance minimization. We prove valid inference

even when the number of arms grows (Kn = o(n1/4)). Simulations and applications

to class-size and policing data demonstrate the robustness of GOATE-DML against

non-linear confounding.
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1 Introduction

Causal studies increasingly involve either several mutually exclusive policy arms—for in-

stance, school-reopening tiers or tax brackets—or a continuous score that functions as a

dosage. In these designs, the näıve ordinary-least-squares (OLS) coefficient on a treatment

indicator is contaminated ; it conflates the arm’s own causal effect with spill-overs that arise

mechanically from correlations among the remaining arms. The point was foreshadowed

in multi-valued treatment work by Robins, Rotnitzky, and Zhao (1994) (reviewed in Lopez

and Gutman, 2017), formalized for linear regressions by Goldsmith-Pinkham et al. (2024)

(GPHK) and S loczyński (2022), and can bias even randomized experiments whenever com-

pliance is imperfect. GPHK offers three coefficient-level “plug-in” corrections—interacted

ATE (IA), common-weight (CW), and easiest-to-estimate (EW)—but their validity rests on

linear conditional means and near-perfect overlap.

A broader literature tackles related but distinct challenges. For discrete arms, semipara-

metric influence-function work derives efficiency bounds and double-robust scores (Newey,

1990; Graham, 2011; Kennedy, 2016); for continuous doses, the generalized propensity-score

framework of Imbens (2000), Hirano and Imbens (2004), Imai and van Dyk (2004), and Imai

and Ratkovic (2014) exposes analogous support problems, while Kennedy (2024), Colan-

gelo and Lee (2020), and Chernozhukov et al. (2022) provide orthogonal scores that unlock

machine-learning first stages. Weak overlap has spurred trimming and overlap-weighting

rules (Crump et al., 2009; Li et al., 2018; Li and Li, 2019; Kallus and Oprescu, 2023), but

none of these strands addresses contamination across multiple arms or unifies discrete and

continuous regimes within one estimator.

This paper provides such a unification. We derive a single, Neyman-orthogonal influence

function that delivers contamination-free estimation for both multi-arm (D ∈ {0, . . . , K})

and continuous-dose (D ∈ R) treatments. The discrete special cases reproduce IA, EW,

and CW—thereby strictly generalizing GPHK—while retaining efficient influence-function

form. Embedding this score in a cross-fitted double-machine-learning (DML) routine (Cher-

nozhukov et al., 2018) yields root-n inference in the presence of high-dimensional, non-linear

nuisances.
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Limited support remains a first-order concern. We therefore focus on the GOATE: the

average effect for the sub-population whose minimum propensity (or conditional density) lies

above a threshold τ . A data-driven mean-squared-error (MSE) rule (Bennett et al., 2023)

chooses τ adaptively, and we prove valid cluster-robust inference even when the number of

arms grows with the sample (Kn = o(n1/4)). GOATE is policy-relevant because it describes

individuals who could plausibly receive any treatment arm, respecting external validity in

settings with limited overlap.

The paper makes four contributions. First, we formally map the contamination bias

decomposition of Goldsmith-Pinkham et al. (2024) to the language of semiparametric effi-

ciency. We demonstrate that the standard EIF is the non-parametric generalization of their

linear corrections. By characterizing the EIF in this specific multi-arm context, we show

that ”de-contamination” is analytically equivalent to satisfying the Neyman orthogonality

condition with respect to the propensity score. In doing so, we synthesize the discrete and

continuous regimes into a single Riesz representer framework, differing only in the reference

measure. Second, it supplies the first contamination-free framework for continuous treat-

ments and proves valid joint inference when the number of arms grows. We establish that

valid inference requires the stricter growth condition Kn = o(n1/4) to control the explosion

of inverse-propensity moments, revising standard high-dimensional CLT results that assume

bounded moments. Third, it formalizes GOATE together with a data-driven trimming rule

that balances bias and variance, and it establishes cluster-robust inference via a cross-fit-

by-cluster scheme. Fourth, the empirical illustrations show that the estimator can alter eco-

nomic conclusions: in Project STAR the estimated small-class effect falls by 0.73 test-score

points relative to OLS—three times the adjustment implied by GPHK—and in two further

micro-credit experiments the estimator uncovers heterogeneous effects that linear methods

obscure. These results connect to semiparametric efficiency bounds for multi-valued treat-

ments (Newey, 1990; Graham, 2011), to recent orthogonalization methods for continuous

doses (Kennedy, 2024), and to high-dimensional central-limit theory (Chernozhukov et al.,

2017). To the best of my knowledge, this is the first contamination-robust, root-n-consistent

estimator that spans both discrete and continuous treatment designs in high-dimensional,

non-linear settings.
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Section 2 introduces notation and high-level assumptions. Section 3 derives the orthog-

onal influence functions. Section 4 maps our score into the linear corrections of Goldsmith-

Pinkham et al. (2024), whereas Section 5 details the cross-fitted estimator and adaptive

trimming rule. Asymptotic theory is given in Section 6, followed by simulations (Section 7)

and empirical applications (Section 8). Section 9 concludes.

2 Setup and Assumptions

The goal of this section is two-fold. First, we spell out the stochastic environment—what

variables are observed and what causal quantities are of interest. Second, we collect the high-

level conditions under which the subsequent orthogonal-score construction and asymptotic

theory will operate. Throughout we let Zi = (Yi, Di,Wi) denote the observable outcome (Y ),

treatment (D), and covariates (W ) for unit i = 1, . . . , n, and assume the draws are i.i.d. for

notational simplicity. Two treatment regimes are covered.

We begin with the canonical setting of K + 1 mutually exclusive arms. Formally, Di ∈

{0, 1, . . . , K}, where k = 0 is the control arm, and we write Dik = 1{Di = k} for the

associated dummies. The propensity score for arm k is pk(W ) = P (Di = k | Wi), k =

0, . . . , K, so pk(W ) ∈ (0, 1) for each k under our overlap conditions below. Throughout the

paper we rely on a standard selection on observables condition.

Assumption 2.1 (Unconfoundedness—Discrete). The vector of potential outcomes

{Yi(0), Yi(1), . . . , Yi(K)} is independent of the realized treatment Di conditional on covariates

Wi: {Yi(0), Yi(1), . . . , Yi(K)} ⊥⊥ Di

∣∣ Wi.

After conditioning on Wi—which may be high-dimensional—assignment to each arm is

“as good as random,” ruling out unobserved confounders. This is the discrete analogue of the

continuous unconfoundedness assumption used below. Our primary target is the arm-specific

ATE relative to control,

θk = E
[
Yi(k) − Yi(0)

]
, k = 1, . . . , K. (1)

Point identification of θk follows directly from Assumption 2.1 and the law of iterated ex-
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pectations. Many empirical studies record a dosage or index rather than a finite set of

arms—think of tax rates, pollution levels, or test scores. We therefore let Di take values in

a compact interval D ⊂ R and denote by f(d | W ) the conditional density of the dose. The

conditional mean function is m(d,W ) = E[Y | D = d,W ].

Assumption 2.2 (Unconfoundedness—Continuous). For every d ∈ D the potential outcome

Yi(d) is independent of the realized dose Di conditional on covariates Wi: Yi(d) ⊥⊥ Di

∣∣ Wi.

In the continuous setting we focus on the average partial effect (APE), θ = E
[
∂dm(Di,Wi)

]
,

i.e. the expected marginal effect of a small dose change evaluated at the observed Di.

Assumption 2.3 (Weak overlap (both designs)). Let τn ↓ 0 be a deterministic trimming

threshold. There exists δ > 0 such that P
(
mink pk(W ) < τn

)
= O(τ δn) (discrete) or P

(
f(D |

W ) < τn
)

= O(τ δn) (continuous).

Assumption 2.4 (Smoothness). The regression functionm(d,W ) and the log-density log f(d |

W ) are twice continuously differentiable in d and lie in a Hölder class of order α > 2 with

respect to W .

These regularity conditions guarantee that the EIF we derive in section 3.1 exists and,

importantly, that local-polynomial estimators can attain the n−1/4 convergence rate that

orthogonal scores require. Estimation becomes unstable when pk(W ) or f(D | W ) approach

zero. Rather than assume a uniform lower bound, we allow the support violations to vanish

slowly with the sample size and control them via trimming.

Remark 2.1 (Trimming indicators and shorthand). We use the following trimming indica-

tors throughout:

T disc
i (τ) = 1

{
min
ℓ≤K

pℓ(Wi) ≥ τ

}
, T cont

i (τ) = 1
{
f(Di | Wi) ≥ τ

}
. (2)

When the design is clear from context we write Ti(τ) for either (2).

The tails of the propensity or density are allowed to get thinner as the sample grows, but

not so fast that we lose
√
n information after trimming the worst-overlap observations. The
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adaptive rule of section 6.3 chooses τn on a data-dependent grid. For the accuracy of machine-

learning first stages, all subsequent estimators rely on non-parametric fits m̂, p̂k, f̂ . The next

assumption imposes the minimal rate conditions under which Neyman orthogonality can

partial out first-stage error.

Assumption 2.5 (Anti-concentration near the trimming threshold). There exist c > 0 and

κ ∈ (0, 2] such that, uniformly over τ ∈ Gn and all h > 0 small enough, Pr
(
|minℓ≤K pℓ(W )−

τ | ≤ h
)

≤ c hκ (discrete), Pr
(
|f(D | W ) − τ | ≤ h

)
≤ c hκ (continuous).

That is, the distribution of the trimming margin has a bounded local density uniformly

over the grid.

Remark 2.2. Assumption 2.5 is implied, for example, if the distribution of minℓ≤K pℓ(W )

(respectively f(D | W )) admits a bounded Hölder-continuous density in a neighborhood of

each τ ∈ Gn. It is used only to control indicator disagreements Pr(T̂i(τ) ̸= Ti(τ)) when we

combine hard trimming with estimated propensities/densities.

Assumption 2.6 (First-stage ML rates). On the trimmed support, ∥m̂−m∥2,T = op(n
−1/4), ∥p̂k−

pk∥2,T = op(n
−1/4), and, for continuous doses, ∥∂dm̂− ∂dm∥2,T , ∥f̂ − f∥2,T = op(n

−1/4).

Honest causal forests, boosted trees, deep nets (Collier et al., 2021), and local-polynomial

estimators all satisfy these rates under either sparsity or smoothness—see Appendix A.12

for citations. We finally record two technical conditions that are invisible in classical low-

dimensional proofs but become essential once we allow (i) clusters of heterogeneous size, and

(ii) a growing number of arms Kn.

Remark 2.3 (Trimmed L2 norm). For any scalar function g(Z) and threshold τ , we define

∥g∥22,T (τ) :=
E[g(Z)2 1{T (τ)=1}]

P(T (τ)=1)
. All rate statements in Assumption 2.6 are with respect to ∥ ·

∥2,T (τ).

Assumption 2.7 (Uniform moments and overlap margin as K grows). Let φ⋆k denote the

efficient score in (6). There exists a trimming lower bound τn ∈ (0, 1) (the minimum of the

grid in section 6.3) such that for all large n:

(i) Uniform overlap tail: P (minℓ pℓ(W ) < t) ≤ C tδ for all t ∈ (0, 1) and some δ > 0;

(ii) Uniform outcome fourth moments: supℓ≤Kn
E
[
|Y −mℓ(W )|4

]
<∞;
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(iii) Joint control of fourth moments and Kn: supk≤Kn
E
[
φ⋆k(Z)4 1{minℓ pℓ(W ) ≥ τn}

]
≤

C4 τ
−q
n for some finite C4 and q ∈ [2, 4]; and the growth/trimming coupling K4

n τ
−q
n

n
−→

0.

This stricter condition (Kn = o(n1/4) when τn is fixed) is necessary because the fourth

moments of the influence function scale with p−3
k ≍ K3

n as the number of arms increases.

The last display ensures the Lyapunov ratio in the many-arm CLT vanishes even if the

fourth moments inflate as τn ↓ 0. When a non-vanishing grid is used (fixed τ > 0), it holds

automatically.

Remark 2.4 (How to pick the grid in practice). If you wish to let the trimming grid vanish

with n while Kn grows, set its minimum according to τn ≍ (K3
n/n)1/q for the q implied by

your learners (e.g. q = 2 under standard tail behavior). This meets Assumption 2.7 and

keeps the many-arm CLT valid.

Remark 2.5 (Fixed-arm vs. growing-Kn scope). Unless explicitly stated otherwise (see

Corollary 6.3), all asymptotic statements in the paper are fixed-arm: the index k is held fixed

as n→ ∞. No restriction on how the total number of arms K = Kn may grow is needed for

these fixed-arm results beyond the uniform moment condition supk≤Kn
E[φ⋆k(Z)4] <∞. The

growth condition Kn = o(n1/4) is used only for the joint many-arm CLT.

Under Assumption 2.4 a trimmed L2 rate of op(n
−1/4) is attainable for local-polynomial

density and regression estimators whenever the treatment dimension d ≤ 4 Cattaneo et al.,

2024.

Remark 2.6. Detailed moment and cross-fit regularity proofs are collected in Appendix A.6.

While the global ATE, τ(d) = E[Y (d)−Y (0)], is the standard target in causal inference,

estimating it requires strong overlap—that is, the propensity score must be bounded away

from zero and one uniformly. Under the weak overlap sequence defined in Assumption

2.2, the standard ATE is not
√
n-estimable because the propensity scores pk(W ) may drift

toward zero. In complex multi-arm experiments, strong overlap assumption often fails (see,

e.g., the analysis of Drexler et al. (2014) in section 8). Therefore, we do not target the ATE

directly. Instead, we define the GOATE as the target parameter, explicitly conditioning on

the trimming set defined by the overlap weights.
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Let V ⊆ supp(W ) denote the region of valid overlap, determined by a trimming rule

based on the propensity score (for discrete D) or the conditional density (for continuous D).

Proposition 2.1. [Identification of GOATE] Under the relevant unconfoundedness assump-

tion (2.1 or 2.2), the trimmed parameter θGOATE is identified as the conditional expectation:

θGOATE(d) = E
[
Y (d) − Y (0) | W ∈ V

]
. (3)

Equivalently, using the Riesz representation, this is the weighted average effect:

θGOATE(d) =
E[1V(W ) · (Y (d) − Y (0))]

E[1V(W )]
. (4)

By targeting (3) rather than the global ATE, we avoid the bias and variance explosion asso-

ciated with extrapolating linear models into regions of poor support.

Proof. See Appendix A.1.

Remark 2.7 (Policy relevance of GOATE). When propensity support is limited, trimming

observations with mink pk(W ) < τ (or f(D|W ) < τ) changes the target parameter from the

full-sample ATE to the Generalized Overlap ATE. GOATE is not a drawback but a feature:

it reports the causal effect on the sub-population that could plausibly have been assigned any

treatment arm, thus respecting external validity for feasible policy counterfactuals.

3 Orthogonal Influence Functions

Contamination arises because a saturated regression forces the coefficients on different treat-

ment arms (or bins) to compete for the same residual variation. The cure is an orthogonal

influence function that: (i) identifies the causal parameter in the usual semiparametric sense,

(ii) removes every linear dependence on the nuisance functions η(·), and therefore (iii) re-

mains first-order valid even when η is estimated by a flexible learner. The two influence

functions below meet all three goals and reduce to classical AIPW scores when K = 1.

The following influence functions both identify the parameters and algebraically remove

the contamination bias of Goldsmith-Pinkham et al. (2024).
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3.1 Continuous Treatment

Let f(d | W ) be the conditional density of the dose and write s(d,W ) = ∂d log f(d | W ) for

its score. Conditional outcome regressions are denoted m(d,W ) = E[Y | D = d,W ].

The EIF is

φ(c)(Z; θ, η) = s(D,W ){Y −m(D,W )} + ∂dm(D,W ) − θ, η = (m, f). (5)

The first term multiplies the outcome residual by the density score— the analogue of

a “clever covariate” familiar from binary AIPW estimators—while the ∂dm term shifts the

moment so that its expectation is exactly the average partial effect θ. Any first-order error in

m̂ or f̂ cancels by construction, which is the essence of Neyman orthogonality proven below.

Remark 3.1 (Relation to Kennedy (2023)). Our continuous score generalizes the “auto-

matic orthogonalization” framework of Kennedy (2023). While Kennedy (2023) derives the

EIF for a scalar continuous treatment, our formulation extends this to the multi-arm set-

ting by explicitly incorporating the contamination terms arising from other treatment levels.

Specifically, the cross-arm orthogonality correction in Equation (5) is absent in the scalar

framework but is necessary here to isolate the marginal effect of dose d from the spill-overs

of doses d′ ̸= d.

Lemma 3.1 (Orthogonality—Continuous). Under Assumptions 2.2 and 2.4, and the bound-

ary condition in Assumption 3.1 below, the influence function φ(c) (i) uniquely identifies θ

and (ii) is Neyman-orthogonal with respect to the nuisance bundle η = (m, f).

Proof Sketch. The proof proceeds in two parts. First, we show that the expectation of

the score is zero at the true parameter values, which establishes identification of θ =

E[∂dm(D,W )]. Second, we compute the pathwise derivative of the moment condition with

respect to perturbations in the nuisance functions m and f and show it is zero. This Neyman

orthogonality property is key to the
√
n-consistency of the DML estimator, as it renders the

estimator insensitive to first-order errors in the estimation of the nuisance functions. The

full, detailed proof is provided in Appendix A.2.

9



Assumption 3.1 (Strict Boundary Control). To ensure the validity of the integration by

parts in Lemma 3.1 when the density f(d|W ) does not vanish at the boundaries of D (e.g.,

f(0|W ) > 0), we require strictly unbiased estimation at the boundary. Standard Gaussian

kernel density estimators suffer from boundary bias O(h) rather than O(h2). Therefore,

estimation of the nuisance functions f(d|W ) and m(d,W ) must utilize boundary-corrected

kernels (e.g., local linear regression) as detailed in Cattaneo et al. (2024). This ensures the

product of the nuisance error and the density vanishes at ∂D at the required n−1/4 rate.

Remark 3.2 (Learners and rates). Under Assumption 3.1 and the smoothness conditions

used for density/local polynomial estimators, the trimmed L2 rates required for our orthogonal

score hold in low dimensions (e.g., d≤ 4), and the integration-by-parts step is valid. State

explicitly whether ∂dm is produced by the same local polynomial fit as m (preferred) or by a

separate fit.

Remark 3.3 (Vector-valued doses). Assumption 3.1 is imposed coordinate-wise when D ∈

Rd, i.e. the boundary product hm(d,W )f(d | W ) must vanish at every face of the rectangular

support D ⊂ Rd. All proofs that rely on integration by parts therefore extend verbatim to

d > 1.

Remark 3.4 (Rates under boundary-robust estimation). Under Assumption 2.4 with α > 2

and treatment dimension d ≤ 4, boundary-corrected local polynomials deliver trimmed L2

rates op(n
−1/4) for (m, ∂dm) and (f, ∂d log f) on any grid value τ > 0, which suffices for

Neyman-orthogonal DML. See Cattaneo et al. (2024) and references therein.

Remark 3.5 (Square-Integrability of the Score s(D,W )). The validity of the asymptotic

theory requires the influence function to have a finite second moment, which in turn de-

pends on the score function s(D,W ) = ∂d log f(D|W ) being square-integrable. Assump-

tion 2.4 states that log f(d|W ) is twice continuously differentiable, which implies that both

s(d,W ) and its derivative ∂ds(d,W ) are continuous functions. On the trimmed support,

where f(D|W ) ≥ τn > 0, the denominator of s(D,W ) = (∂df)/f is bounded away from zero.

As continuous functions on a compact domain are bounded, both ∂df(d,W ) and f(d|W ) (on

the trimmed set) are bounded. Therefore, s(D,W ) is bounded on the trimmed support. A
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bounded random variable on a probability space necessarily has finite moments of all orders,

ensuring that E[s(D,W )2 · 1{f(D|W ) ≥ τn}] <∞.

Plugging φ(c)(Zi; θ̂, η̂) into a cross-fitted DML estimator therefore yields
√
n-consistent

and semiparametrically efficient inference for continuous treatments—even when m and f

are fitted by, say, boosted trees or deep nets.

3.2 Discrete Multi-Arm Treatment

For mutually exclusive arms D ∈ {0, 1, . . . , K} let mℓ(W ) = E[Y | D = ℓ,W ] and pℓ(W ) =

P (D = ℓ | W ). Contamination in a plain dummy regression stems from the fact that the

dummies sum to one; the EIF below corrects this algebraically by subtracting the control

term arm-by-arm.

The efficient, contamination-free influence function for arm k is

φ⋆k(Z; θk, η) =
[
mk(W ) −m0(W )

]
+

Dik

pk(W )

{
Y −mk(W )

}
− Di0

p0(W )

{
Y −m0(W )

}
− θk,

(6)

with nuisance bundle η = (m0, . . . ,mK , p0, . . . , pK).

The structure mirrors an AIPW score for a binary treatment, except that the outcome-

regression and IPW corrections are stacked in a “treatment-minus-control” fashion.

Lemma 3.2 (Identification & Neyman orthogonality). Let τk(W ) = E[Yi(k) − Yi(0) | W ].

Then E[φ⋆k] = E[τk(W )] − θk; hence E[φ⋆k] = 0 iff θk = E[Yi(k) − Yi(0)]. Moreover,

∂rE[φ⋆k(Z; θk, η + rh)]r=0 = 0 for every mean-zero perturbation h = (hm, hp), and φ⋆k at-

tains the semiparametric efficiency bound.

Because φ⋆k is also doubly robust, an empiricist only needs one of the two first-stage

models—propensities or outcome regressions—to be well estimated. This is crucial when

flexible learners are applied in high-dimensional W . This structure generalizes the binary-

treatment efficiency results of Hahn (1998) to the multi-arm setting.

Proof Sketch. The proof establishes two key properties. First, identification, which shows

that the score has a unique root at the true ATE θk. Second, Neyman orthogonality, which
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demonstrates that the moment condition is locally insensitive to errors in the nuisance func-

tions η. This latter property is essential for the validity of the DML estimator. The logic

relies on the law of iterated expectations and the specific structure of the score, which bal-

ances regression-adjustment and inverse-propensity weighting terms. A full, step-by-step

derivation is provided in Appendix A.4.

Remark 3.6 (Double robustness). The moment condition in Lemma 3.2 continues to hold

if either all outcome regressions (mℓ) or all propensity scores (pℓ) are consistently estimated,

as shown in Appendix A.4.

4 Mappings to ATE(IA), CW, and EW

This section makes the algebra explicit. Interacted–ATE (IA) and Common–Weight (CW)

are plug-in instances of our unified orthogonal score, while EW coincides with the pairwise

AIPW score on the binary subsample {D ∈ {0, k}}.

4.1 Interacted–ATE (IA): explicit mapping in sample

Let the saturated linear model be Yi = α0 + β⊤0Wi +
∑K

ℓ=1Diℓ (αℓ + β⊤ℓWi) + εi, E[εi |

Di,Wi] = 0, and let m̂ℓ(W ) = α̂ℓ + β̂⊤ℓW be the OLS fits on the training folds (cross-fitted).

Define the arm-specific OLS residuals riℓ = Yi − m̂ℓ(Wi) and note the normal equations

∑
i∈Ij

1{Di = ℓ} riℓ = 0,
∑
i∈Ij

1{Di = ℓ} riℓWi = 0, (ℓ = 0, . . . , K). (7)

Our efficient score for arm k (cf. (6)) is φ⋆k(Zi; θk, η) =
[
mk(Wi)−m0(Wi)

]
+ Dik

pk(Wi)
{Yi−

mk(Wi)} − Di0

p0(Wi)
{Yi − m0(Wi)} − θk. Evaluate it with nuisances (m̂, p̂) and drop the −θk

term to form the raw moment ψ̂ik =
[
m̂k(Wi) − m̂0(Wi)

]
+ Dik

p̂k(Wi)
rik − Di0

p̂0(Wi)
ri0.

Add and subtract Dik rik and Di0 ri0 to re-express the IPW residual terms: Dik

p̂k
rik =

Dikrik+
(
Dik

p̂k
−Dik

)
rik,

Di0

p̂0
ri0 = Di0ri0+

(
Di0

p̂0
−Di0

)
ri0. Summing over i ∈ Ij and using (7),

the unweighted residual sums
∑
Dikrik and

∑
Di0ri0 vanish exactly on each estimation fold,

leaving
∑

i∈Ij ψ̂ik =
∑

i∈Ij

[
m̂k(Wi)− m̂0(Wi)

]
+
∑

i∈Ij

(
Dik

p̂k
−Dik

)
rik−

∑
i∈Ij

(
Di0

p̂0
−Di0

)
ri0.
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If (as is standard) p̂ℓ are estimated consistently (e.g., multinomial logit, RF, GBM) on the

complementary folds, then the last two sums are op(n) by cross-fit orthogonality. Hence

the trimmed sample moment equation
∑

i Ti(τ̂) ψ̂ik = 0 is equivalent, up to op(n), to the

interacted-ATE estimating equation
∑

i Ti(τ̂)
[
m̂k(Wi) − m̂0(Wi)

]
=
(∑

i Ti(τ̂)
)
θ̂IAk . Thus

the IA estimator is the plug-in DML solution for our score, with op(n
−1/2) differences in

θ̂k under the ML rates. IA solves the same orthogonal moment as our estimator, modulo

cross-fit op(n
−1/2) terms coming from weighting the residuals by p̂−1

ℓ .

Proposition 4.1 (IA as plug-in DML). Under Assumption 2.6 (first-stage L2 rates op(n
−1/4)

on the trimmed support) and J-fold cross-fitting, the plug-in DML sample moment based on

(6) equals the IA estimating equation up to op(n
−1/2). Consequently, the IA point estimate

and the plug-in DML estimate are asymptotically equivalent: θ̂IAk − θ̂DML
k = op(n

−1/2).

4.2 Common–Weight (CW): explicit mapping in sample

Let g(W ) be the CW weight g(W ) =
[∑K

ℓ=0 π̂ℓ(1 − π̂ℓ)/p̂ℓ(W )
]−1

, π̂ℓ = n−1
∑

iDiℓ.

Define the CW “stabilized” indicators D̃iℓ = g(Wi)Diℓ

p̂ℓ(Wi)
. The CW normal equation for θk is the

weighted moment ∑
i

Ti(τ̂) g(Wi) (Dik − π̂k)
(
Yi − θ̂CW

k

)
= 0. (8)

Start from the raw DML moment ψ̂ik above and multiply the two IPW residual terms

by g(Wi) (which does not change the root of the moment condition because the mk − m0

piece is unweighted). Then
∑

i Ti(τ̂) ψ̂ik =
∑

i Ti(τ̂)
[
m̂k(Wi) − m̂0(Wi)

]
+
∑

i Ti(τ̂)D̃ik rik −∑
i Ti(τ̂)D̃i0 ri0.Use riℓ = Yi−m̂ℓ(Wi), expand, and regroup terms to isolate Yi:

∑
i Ti(τ̂) ψ̂ik =∑

i Ti(τ̂)
[
D̃ik − D̃i0

]
Yi −

∑
i Ti(τ̂)

[
D̃ik − D̃i0

]
m̂•(Wi), where m̂• denotes the appropriate

arm-specific regression in each term. Because the CW propensity fits satisfy the calibration

identities
∑

i Ti(τ̂) D̃iℓ =
∑

i Ti(τ̂) g(Wi)
Diℓ

p̂ℓ(Wi)
≈

∑
i Ti(τ̂) g(Wi) (ℓ = 0, k), the terms

involving m̂• cancel up to op(n), and the remaining Y -part reduces to (8) after subtracting

θ̂k
∑

i Tig(Wi)(Dik − π̂k) = 0. Thus CW and the plug-in DML moment coincide up to op(n)

under the CW propensity fit. With CW propensities, the unified score’s sample moment is

the CW weighted normal equation (plus op(n) cross-fit remainders), so the estimators are

asymptotically equivalent under the stated rates.
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Proposition 4.2 (CW as plug-in DML). Under Assumption 2.6 and J-fold cross-fitting,

the plug-in DML sample moment based on (6) equals the CW estimating equation up to

op(n
−1/2) when CW propensities are used in the score. Hence the CW and plug-in DML

point estimates are asymptotically equivalent: θ̂CW
k − θ̂DML

k = op(n
−1/2).

4.3 Easiest-to-Estimate (EW): pairwise AIPW and the cost of dis-

carding data

Restrict to the binary subsample {D = 0} ∪ {D = k} and denote the binary propensities

by qℓ(W ) = P (D = ℓ | W, D ∈ {0, k}). Our score (6) collapses to the classical AIPW score:

ψAIPW
ik =

[
mk(Wi) −m0(Wi)

]
+ Dik

qk(Wi)
{Yi −mk(Wi)} − Di0

q0(Wi)
{Yi −m0(Wi)}. Hence EW is

numerically identical to pairwise AIPW when implemented with cross-fitted nuisances on

the {0, k} subsample.

Remark 4.1 (EW uses fewer augmentation samples). EW throws away all units with D /∈

{0, k} when forming the sample moment. Those units would still contribute through the

augmentation term mk(W )−m0(W ) in our full-sample score. Heuristically, if π0k = P (D ∈

{0, k}), then the variance contribution from the augmentation term scales like π−1
0k times the

conditional density of mk(W ) −m0(W ) given D ∈ {0, k}, so when π0k is small (many-arm

designs), EW can be materially less precise. In contrast, the full-sample score averages

the augmentation term over all W draws, improving precision while keeping the IPW part

restricted to the two relevant arms.

Aggregators and equivalences. Let Ti(τ) be the trimming indicator (discrete or contin-

uous), and define θ̂k(τ) =
∑n

i=1 Ti(τ)φ
⋆
k(Zi;η̂)∑n

i=1 Ti(τ)
, k = 1, . . . , K, as our cross-fitted orthogonal

estimator on the trimmed sample, where φ⋆k is the efficient score and η̂ collects first-stage

learners (as defined earlier in this section).

We consider three scalar aggregators formed as linear functionals of (θ̂1(τ), . . . , θ̂K(τ)):

θ̂ATE(IA)(τ) := 1
K

∑K
k=1 θ̂k(τ),

θ̂CW(τ) :=
∑K

k=1 ω̂
CW
k (τ) θ̂k(τ), with ω̂CW

k (τ) ∈
{

1
K
,

∑
i Ti(τ)1{Di=k}∑

i Ti(τ)

}
,

θ̂EW(τ) :=
∑K

k=1 ω̂
EW
k (τ) θ̂pairk (τ), θ̂pairk (τ) :=

∑
i Ti(τ)1{Di∈{0,k}}φ⋆

k,0(Zi;η̂)∑
i Ti(τ)1{Di∈{0,k}} , where φ⋆k,0 is the

14



standard binary AIPW score for the pair “k vs. 0”. The weights ω̂EW
k (τ) can be uniform

(1/K) or proportional to trimmed arm shares, mirroring common implementations.

Corollary 4.1 (Equivalence of Aggregated Estimators). It follows from the arm-specific

equivalences in Propositions 4.1 and 4.2 that the linear aggregators inherit the same asymp-

totic properties. Since each aggregated estimator is a finite linear combination of the arm-

specific θ̂k(τ), the difference between the plug-in and aggregated versions is a linear combi-

nation of op(n
−1/2) terms. Specifically, θ̂

ATE(IA)
reg (τ) = θ̂ATE(IA)(τ) + op(n

−1/2) and θ̂CW
reg (τ) =

θ̂CW(τ)+op(n
−1/2). Similarly, the ”one-treatment-at-a-time” implementation of EW satisfies

θ̂EW1t (τ) = θ̂EW(τ) + op(n
−1/2).

Remark 4.2 (Efficiency Cost of EW). While the EW aggregator is consistent, restricting

estimation to the binary subsample {D ∈ {0, k}} discards observations from other arms.

Theoretically, this renders EW asymptotically less efficient than stacking all arms when the

probability of the pair π0k is small (i.e., when K is large). However, in settings with few

arms (e.g., K = 3), this efficiency loss may be negligible compared to the stability gains from

estimating fewer nuisance parameters, as observed in our Strong Overlap simulations. The

primary advantage of GOATE-DML lies in its robustness to weak overlap and non-linearity,

rather than raw efficiency in simple designs.

Remark 4.3 (Efficiency Cost of EW). While the EW aggregator is consistent, restricting

estimation to the binary subsample {D ∈ {0, k}} (as in θ̂pairk ) is asymptotically less efficient

than stacking all arms in the full-sample estimator θ̂k(τ) when the probability of the pair

π0k is small. The full-sample approach leverages the shared control group structure more

effectively.

Remark 4.4 (Practical use). Pick the aggregator (ATE/CW/EW) to match the empiri-

cal estimand you wish to report; our theory and standard errors apply componentwise to

(θ̂1, . . . , θ̂K) and, by the delta method, to any linear aggregator thereof.
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5 GOATE–DML Estimator & Algorithm

Remark 5.1. Uniform moment and cross-fit regularity proofs for Algorithm 1 are given in

Appendix A.6.

Algorithm 1 Unified GOATE–DML with Adaptive Trimming

1: Input: Sample Zn = {(Yi, Di,Wi)}ni=1, trimming threshold τ ∈ (0, 1), J folds.
2: Initialize: Partition sample into folds {Ij}Jj=1. Let Icj = {1, . . . , n} \ Ij denote the

estimation set.
3: for j = 1 to J do
4: Step 1: Nuisance Estimation (Cross-Fitting)
5: Using training data Icj , estimate the nuisance parameter η̂(j):

6: Discrete: η̂(j) = {m̂k, p̂k}Kk=0.
7: Continuous: η̂(j) = {m̂(d, w), ∂dm̂(d, w), ŝ(d, w)}.
8: Step 2: Score Evaluation
9: for i ∈ Ij do
10: Trimming Indicator:
11: Ti(τ) = 1

{
mink p̂k(Wi) ≥ τ

}
(or 1{f̂(Di|Wi) ≥ τ}).

12: Uncentered Orthogonal Score ψ̂i:
13: if Discrete Case then ▷ Eq. 6

ψ̂i = m̂Di
(Wi) − m̂0(Wi) +

Dik(Yi − m̂k(Wi))

p̂k(Wi)
− Di0(Yi − m̂0(Wi))

p̂0(Wi)

14: else ▷ Continuous Case, Eq. 5

ψ̂i = ŝ(Di,Wi){Yi − m̂(Di,Wi)} + ∂dm̂(Di,Wi)

15: end if
16: end for
17: end for
18: Step 3: Aggregation
19: Effective Sample Size: Neff =

∑n
i=1 Ti(τ).

20: GOATE Estimator:

θ̂(τ) =
1

Neff

N∑
i=1

Ti(τ) · ψ̂i

21: Variance Estimation: Compute V̂cl(τ) as defined in Theorem 6.4 (Section 6.5).

Remark 5.2. Clustered sampling is handled formally in Section 6.5. All inference state-

ments below admit a cluster-robust version under the assumptions recorded there.
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When the nuisance fits are restricted as in section 4, Algorithm 1 reproduces IA, EW, or

CW exactly. If observations are grouped in G clusters {Cg}Gg=1 with arbitrary within-cluster

dependence and independence across clusters, form folds by clusters : {Ij}Jj=1 is a parti-

tion of the cluster set {1, . . . , G} and the estimation/validation uses
⋃
g∈Ij Cg as the jth

hold-out block. All nuisance fits and trimming thresholds for units in
⋃
g∈Ij Cg are trained

on
⋃
m̸=j

⋃
g∈Im Cg.

6 Asymptotic Theory & Inference

6.1 Root-n CLT for the Orthogonal Score under Deterministic

Trimming

The next result shows that a fixed threshold τn already delivers
√
n inference when weak

overlap is modestly severe.

Theorem 6.1 (Asymptotic normality under deterministic trimming). Let θ̂k be the DML

estimator for the arm-k ATE from Algorithm 1, and let a similar definition apply to the

continuous-case APE θ̂. Under Assumptions 2.1–2.6 and the following conditions :

1. The nuisance estimators converge at the required rate: ∥m̂ℓ −mℓ∥2,T = op(n
−1/4) and

∥p̂ℓ − pℓ∥2,T = op(n
−1/4) (and similarly for the continuous case).

2. The trimming sequence satisfies nτ 2δn → 0 (with δ from Assumption 2.3).

3. The conditional ATEs, τk(W ), are bounded.

4. The variance of the influence function, Vk = E[φ⋆k(Z)2], is finite and positive.

Then the DML estimator is consistent, asymptotically normal, and semiparametrically effi-

cient:
√
n(θ̂k − θk)

d−→ N(0, Vk).

Furthermore, the centered plug-in variance estimator V̂k =
(∑

i Ti

)−2∑n
i=1 Ti

{
φ̂ik −

φ̄T,k
}2
, φ̄T,k =

(∑
i Ti

)−1∑n
i=1 Ti φ̂ik, is consistent for Vk = E[φ⋆k(Z)2].

Proof Sketch. Decompose
√
n(θ̂k − θk) into the trimmed sample average of the influence

function, a cross-fit remainder, and a bias term. Neyman orthogonality makes the remainder
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op(1) once the nuisance estimates obey the n−1/4 rate, while the bias is O
(√

n τ δn
)

= o(1)

because nτ 2δn → 0. A Lyapunov CLT applied to the leading term then yields the stated

limit. Full details are in Appendix A.5. Since τn ↓ 0 and nτ 2δn → 0, we have φ̄T,k =(∑
i Ti
)−1∑

i Ti φ̂ik = op(1) by the linearization in (17) and Lemma A.3. Hence the centered

and uncentered trimmed second moments differ by op(1), so either form consistently estimates

Vk under deterministic vanishing trimming.

6.2 Asymptotic Guarantees

This section answers three questions: What parameter do we estimate after trimming? How

should the trimming threshold τ̂ be chosen? What is the distribution of the data–driven

estimator θ̂?

The proofs rely only on the orthogonality lemmas from section 3 and the cross-fit regular-

ity results collected in Appendix A.6. A high-level road-map precedes each formal statement;

all algebraic details are deferred to the appendix.

Recall the trimming indicators Ti(τ) defined in Remark 2.1. Where no ambiguity can

arise we suppress the superscripts and write Ti(τ).

Explicit indicators: T disc
i (τ) = 1

{
minℓ≤K pℓ(Wi) ≥ τ

}
, T cont

i (τ) = 1
{
f(Di | Wi) ≥ τ

}
.

θk(τ) = E
[
τk(W )

∣∣T disc
i (τ) = 1

]
=

E
[
τk(W )T disc

i (τ)
]

P
(
T disc
i (τ) = 1

) , (9)

θ(c)(τ) = E
[
∂dm(Di,Wi)

∣∣T cont
i (τ) = 1

]
=

E
[
∂dm(Di,Wi)T

cont
i (τ)

]
P
(
T cont
i (τ) = 1

) . (10)

These explicit parameters θ(τ) correspond to the theoretical GOATE estimands defined

in Equations 3–4, where the region of valid overlap V is determined by the threshold τ .

When τ = 0 we recover the full-population parameters θk and θ. Because weak overlap

forces us to delete the worst-supported units, the random estimator θ̂ targets the correspond-

ing θ(τ̂). The data-driven trimming bias is controlled below.

Lemma 6.1 (Trimming bias bound). Let Aτ = {Ti(τ) = 1} in the discrete case and Aτ =

{T cont
i (τ) = 1} in the continuous case. If either (i) |τk(W )| ≤ C and |∂dm(D,W )| ≤ C a.s.,

or (ii) E[|τk(W )|q] + E[|∂dm(D,W )|q] ≤ C for some q > 1, then as τ ↓ 0, |θ(τ) − θ| ≤
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
C P (Acτ ), under (i),

C P (Acτ )
1− 1

q , under (ii).

Under Assumption 2.3, P (Acτ ) = O(τ δ), so |θ(τ) − θ| = O(τ δ)

under (i) and O(τ δ(1−1/q)) under (ii).

Proof. See Appendix A.8.

Remark 6.1 (Inference on the Trimmed Parameter vs. ATE). We emphasize that when

the optimal threshold τ̂ does not converge to zero (i.e., in cases of severe overlap violation),

our estimator θ̂(τ̂) targets the sample-dependent parameter θ(τ̂). While Lemma 6.1 bounds

the difference |θ(τ) − θ|, in finite samples with fixed non-zero trimming, the inference is

conditional on the region of common support defined by τ̂ . Users should interpret results not

as the global ATE, but as the effect valid for the sub-population with empirically sufficient

overlap (the ”feasible policy” population).

6.3 Uniform MSE rule for the threshold

Trimming trades variance reduction against bias. On a finite grid G = {τ1 < · · · < τG} we

minimize the empirical proxy of (Bennett et al., 2023) : M̂SE(τ) = V̂ (τ) + B̂(τ)2, τ̂ =

arg minτ∈G M̂SE(τ).

On a finite grid Gn, for each τ ∈ Gn we compute

M̂SE(τ) = V̂ (τ)︸ ︷︷ ︸
variance proxy

+ B̂(τ)2︸ ︷︷ ︸
bias proxy

, (11)

where (with φ̂i(τ) the cross-fitted empirical influence value and φ̄T (τ) = {
∑

i Ti(τ)}−1
∑

i Ti(τ)φ̂i(τ))

V̂ (τ) =
( n∑
i=1

Ti(τ)
)−2

n∑
i=1

Ti(τ)
{
φ̂i(τ) − φ̄T (τ)

}2
, (12)

B̂(τ) =

∣∣∣∣∣
∑n

i=1{1 − Ti(τ)} φ̂i(τ)∑n
i=1 Ti(τ)

∣∣∣∣∣ . (13)

The bias proxy (13) exploits that the trimming bias equals −{E[φ(Z)1{T (τ) = 0}]}/P (T (τ) =

1), so (13) is its cross-fitted plug-in. The selector is τ̂ ∈ arg minτ∈Gn M̂SE(τ).
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Lemma 6.2 (Uniform consistency of the MSE selector). Under Assumptions 2.1–2.6, 2.3,

and 2.5, and the uniform LLN of Lemma A.3, if Gn is finite and maxGn ↓ 0, then supτ∈Gn

∣∣ M̂SE(τ)−

MSE(τ)
∣∣ p−→ 0, τ̂

p−→ τ ⋆ ∈ arg minτ∈Gn MSE(τ).

Proof Sketch. Uniform LLNs for (12) and (13) follow from Lemma A.3 (finite class over Gn),

orthogonality (Lemmas 3.1–3.2), and cross-fit stability (Lemma A.4).

Remark 6.2 (Implementation note). The replication code uses exactly (11)–(13) on the

same grid Gn reported in the paper.

Lemma 6.2 shows τ̂
p→ τ ⋆, the population-optimal threshold, and Lemma A.3 establishes

a uniform LLN needed for the subsequent CLT. When clusters are present, the grid search

and M̂SE(τ) are computed observation-wise exactly as in the i.i.d. case, but all asymptotics

are taken in G (the number of clusters). The uniform LLN over Gn holds at the cluster level

by independence across clusters and the moment bounds in Assumption 6.1.

6.4 Root-n inference with data-driven trimming

Condition 6.1 (Vanishing trimming grid). Let {Gn}n≥1 be a sequence of finite trimming

grids with τ̄n := maxGn ↓ 0 and n τ̄ 2δn → 0 (with δ from Assumption 2.3).

Remark 6.3. Under Condition 6.1, the trimming bias is op(n
−1/2) and the centered plug-in

variance estimator in Theorem 6.2 is consistent for V = E[φ(Z)2].

Theorem 6.2 (Central limit theorem). Assume (i) unconfoundedness (Ass. 2.1 and Ass. 2.2),

(ii) weak overlap (Ass. 2.3), (iii) n−1/4 first-stage rates (Ass. 2.6), and (iv) the vanishing-grid

condition (Con. 6.1). Then
√
n (θ̂ − θ)

d−→ N
(
0, V

)
, V = E

[
φ(Z)2

]
. Moreover (a) the

centered plug-in variance estimator V̂ =
(∑

i Ti(τ̂)
)−2∑n

i=1 Ti(τ̂)
{
φ̂i − φ̄T

}2

, φ̄T =(∑
i Ti(τ̂)

)−1∑
i Ti(τ̂)φ̂i, is consistent for V , and (b) the trimming bias is op(n

−1/2) because
√
n |θ(τ̂) − θ| = Op

(√
n τ̄ δn

)
= op(1).

Remark 6.4 (If trimming does not vanish). If τ̂
p−→ τ̄ > 0 (e.g., a fixed grid not shrinking

with n), the estimator targets the trimmed parameter θ(τ̄) and the ratio form θ̂ − θ(τ̄) =

1
n

∑
i Ti(τ̄)φi

1
n

∑
i Ti(τ̄)

+ op(n
−1/2) yields the asymptotic variance Vtrim(τ̄) =

E

[
T (τ̄)
{
φ(Z)−(θ(τ̄)−θ)

}2
]

{
P
(
T (τ̄)=1

)}2 . In
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this regime, the centered plug-in estimator in Theorem 6.2 with Ti(τ̂) consistently estimates

Vtrim(τ̄). When τ̄ = 0, P (T = 1) → 1 and θ(τ̄) − θ → 0, so Vtrim(0) = E[φ(Z)2] = V .

Proof Sketch. Expand
√
n(θ̂− θ) via the orthogonal score, show that the cross-fit remainder

is op(1) (Lemma A.4), and control the bias term with Assumption 2.3. A Lyapunov CLT

then yields the stated limit; full details are in Appendix A.7.

Remark 6.5 (Efficiency). For continuous doses φ(c) in (5) is the efficient score of Cham-

berlain (1992) and Newey (1994); for discrete arms φ⋆k in (6) is likewise efficient. Under the

vanishing-grid condition (Condition 6.1), the asymptotic variance equals V = E[φ(Z)2] and

data-driven trimming does not inflate the variance. If trimming converges to a positive limit,

the variance equals the trimmed limit Vtrim(τ̄) stated in the remark following Theorem 6.2.

Corollary 6.3 (Many-arm extension). If K = Kn = o(n1/4) and the score satisfies uniform

fourth-moment and variance bounds, Theorem 6.2 holds jointly for (θ̂1, . . . , θ̂Kn)⊤. Proof is

in A.9.

Even under weak overlap and high-dimensional nuisance learning, the cross-fitted, trimmed

DML estimator is root-n regular, efficient, and ready for Wald-type inference.

Remark 6.6 (Why Kn = o(n1/4)). Our joint CLT uses a Lyapunov fourth-moment argu-

ment. Unlike standard high-dimensional settings where moments are bounded, the inverse-

propensity weights in our score scale with K3
n. To ensure the tails of the score distribution

do not violate the Gaussian approximation, we require the stricter growth rate Kn = o(n1/4).

6.5 Clustered Sampling: Cross-Fit-by-Cluster and Cluster-Robust

Inference

We now formalize inference when observations are grouped into clusters {Cg}Gg=1 (e.g., schools,

counties, firms) with arbitrary dependence within clusters and independence across clusters.

Assumption 6.1 (Cluster sampling). The sample consists of G→ ∞ clusters Cg = {(Ygi, Dgi,Wgi)}ng

i=1.

Clusters are independent and identically distributed draws of arrays of arbitrary size ng ≥ 1;

dependence within a given cluster is unrestricted. Let Tgi(τ) be the trimming indicator and
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ψgi the raw moment from Algorithm 1 (either discrete or continuous design). Define the clus-

ter sums Ψg(τ) =
∑

i∈Cg Tgi(τ)ψgi, Ng(τ) =
∑

i∈Cg Tgi(τ). Assume E
[
Ng(τ)

]
∈ (0,∞)

and E
[
{Ψg(τ) − θ(τ)Ng(τ)}2

]
< ∞ for all τ in the trimming grid Gn of Assumption 6.1. A

uniform fourth-moment bound holds: supτ∈Gn
E
[
{Ψg(τ) − θ(τ)Ng(τ)}4

]
<∞.

Assumption 6.2 (Cross-fitting respects clusters). Folds are created at the cluster level: each

fold j is a subset of clusters Ij ⊂ {1, . . . , G}, and all observations in
⋃
g∈Ij Cg use nuisances

trained on the complement
⋃
m̸=j

⋃
g∈Im Cg. Assumption 2.6 holds on the trimmed support

uniformly over folds.

Assumption 6.3 (Weak overlap by cluster). Assumption 2.3 holds and the vanishing-grid

condition in Assumption 6.1 is satisfied. In particular, the data-driven τ̂ ∈ Gn obeys τ̄n ↓ 0

and n τ̄ 2δn → 0, where n =
∑G

g=1 ng.

Theorem 6.4 (Cluster-robust CLT). Under Assumptions 6.1–6.3 and the orthogonality

lemmas in section 3, let θ̂(τ̂) =
∑G

g=1 Ψg(τ̂)∑G
g=1Ng(τ̂)

. Then
√
G
{
θ̂(τ̂) − θ

} d−→ N
(

0, Vclu

)
, Vclu =(

Ψg−θNg

)
{E[Ng ]}2 , where all moments are evaluated at the population-optimal limiting threshold (zero

under Condition 6.1). Moreover, the following plug-in cluster-robust variance estimator is

consistent: V̂clu =
(∑G

g=1Ng(τ̂)
)−2

G
G−1

∑G
g=1

{
Φ̂g(τ̂)

}2

, Φ̂g(τ̂) =
∑

i∈Cg Tgi(τ̂)
{
ψ̂gi −

θ̂(τ̂)
}
. (Notice

∑
g Φ̂g(τ̂) = 0 by construction, so no extra centering is needed.) Using

t-critical values with G− 1 degrees of freedom is recommended when G is small.

Proof Sketch. Write Ψ̄G = G−1
∑

g Ψg(τ̂) and N̄G = G−1
∑

gNg(τ̂); then θ̂(τ̂) = Ψ̄G/N̄G. A

delta-method expansion in the i.i.d. cluster array yields
√
G{θ̂−θ} = {E[Ng]}−1G−1/2

∑
g{Ψg−

θNg} + op(1). Orthogonality and cross-fit-by-cluster give op(1) remainders at the same rate

as in Theorem 6.2, while the trimming bias is op(G
−1/2) because τ̄n ↓ 0 and G → ∞. Lya-

punov’s CLT applies to the cluster sums Φg = Ψg − θNg under the fourth-moment bound.

Consistency of V̂clu follows from a cluster-level LLN and the fact that
∑

g Φ̂g = 0. Full details

in A.14 mirror the non-clustered proof with indices aggregated at the cluster level.

Remark 6.7 (What changes in practice?). (i) Create folds at the cluster level; (ii) keep

the point estimator unchanged; (iii) compute standard errors from cluster sums Φ̂g(τ̂) as in

Theorem 6.4; (iv) use tG−1 critical values if G is small.
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7 Monte-Carlo Simulations

7.1 Data Generation Processes

Before turning to the empirical application, we evaluate the finite-sample performance of the

proposed estimators using two data-generating processes (DGPs). We consider a discrete

multi-arm setting (Design A) and a continuous-dose setting with non-linear confounding

(Design B). The key features of both designs are summarized in Table 1.

Table 1: Monte-Carlo data-generation settings

Design A: Discrete Treatment Design B: Continuous

Feature Linear Surface Non-linear Surface Non-linear Confounding

Data Generation

Covariates W N (0, 1) ⊗10 N (0, 1) ⊗10 U [−3, 3]

Assignment Model Multinomial Logit Multinomial Logit Sigmoid Propensity

Outcome Signal τ(W ) Linear (δW ) Sinusoidal Constant (τ = 1)

Confounding Form Implicit Implicit Sinusoidal + Threshold

Overlap Control γ ∈ {0.6, 1.8} γ ∈ {0.6, 1.8} Adaptive Trimming

Simulation Parameters

Sample Sizes N 1,000, 2,000, 4,000 1,000, 2,000, 4,000 1,000, 2,000, 4,000

Replications 100 100 100

7.1.1 Design A: Three Discrete Arms

We generate ten baseline covariates W = (W1, . . . ,W10) drawn independently from a stan-

dard normal distribution. The treatment assignment follows a multinomial logit model where

the probability of being assigned to arm k ∈ {1, 2, 3} is given by pk(W ) ∝ exp{γk+γW⊤βk}.

We set intercepts γk = 0 and sparse loadings βk1 = 1, βk2 = −1, and βkj = 0 for j ≥ 3.
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The scalar parameter γ governs the extent of overlap: we consider a strong overlap scenario

(γ = 0.6) and a weak overlap scenario (γ = 1.8).

The outcome is generated as Y = µ(W )+
∑3

k=1Dikτk(W )+ε, with standard normal errors

ε. The baseline conditional mean is µ(W ) = W1 +W 2
2 . We assess robustness by varying the

response surface τk(W ). In the linear specification, effects are generated as τk(W ) = δk+δW1.

In the non-linear specification, effects follow a sinusoidal form τk(W ) = δk + δ sin(W1 +W2).

We set the scaling parameter δ = 0.5 and the arm-specific shifts (δ1, δ2, δ3) = (1, 2, 3).

7.1.2 Design B: Continuous Dosage with Non-Linear Confounding

To test the robustness of the estimators against functional form misspecification in continuous

settings, we generate a continuous dose Di and an outcome Yi exhibiting complex non-linear

confounding. The propensity score E[D|W ] is modeled as a non-linear sigmoid function of

covariates Wi drawn from a uniform distribution on [−3, 3]. The outcome is generated as:

Yi = τDi + sin(2Wi) + 0.5W 2
i + 2I(Wi > 0.5) + ϵi, (14)

where the true treatment effect is constant at τ = 1. This design violates the global lin-

earity assumptions typically invoked in standard regression adjustments, as the confounding

function includes trigonometric, quadratic, and threshold components.

7.1.3 Estimation Details

For the nuisance components, we employ Random Forests (Athey and Wager, 2018) to

estimate both the conditional mean of the outcome E[Y |W ] and the conditional mean of

the treatment E[D|W ]. The forests are grown with 50 trees and a maximum depth of 6

to prevent overfitting. All DML estimators use J = 2-fold cross-fitting. To address weak

overlap in the continuous design, we implement a fixed trimming rule based on the residual

variance of the treatment, discarding observations with squared residuals in the lowest 5th

percentile to ensure stability.

24



7.2 Monte-Carlo evidence for discrete treatments (Design A)

We first evaluate the finite-sample performance of the orthogonal GOATE–DML estimator

relative to the standard OLS baseline and the linear corrections (EW, IA, CW) proposed by

Goldsmith-Pinkham et al. (2024). This analysis serves as the primary validation of the esti-

mator’s core properties before extending the framework to continuous doses and real-world

applications. Specifically, we test three theoretical claims: first, that orthogonal scores com-

bined with non-parametric learners can remove contamination bias even when the functional

form of confounding is unknown and OLS fails; second, that data-adaptive trimming is nec-

essary to ensure stability and bounded variance when overlap is weak, preventing the catas-

trophic failures observed in linear weighting methods; and third, that the estimator achieves
√
n-consistency and valid inference without sacrificing efficiency in simple, linear settings.

We consider a three-arm setting (K = 3) under two regimes: strong overlap (γ = 0.6) and

weak overlap (γ = 1.8).

Table 2 summarizes the results, reporting the mean absolute bias and root mean squared

error (RMSE) averaged across the three treatment arms. Under linear potential outcomes

(Left Panel), every estimator that is correctly specified (OLS, IA) or orthogonalised (EW,

GOATE-DML) performs well. Biases are negligible across the board. GOATE–DML incurs

a small efficiency cost at N = 1, 000 due to sample splitting (RMSE 0.105 versus 0.086 for

OLS), but this gap effectively vanishes by N = 4, 000. This confirms that the estimator is

safe to use even when the linear assumptions hold.

In the non-linear design (Right Panel), the baseline OLS estimator exhibits persistent bias

(approx. 0.10) under weak overlap, which does not vanish with sample size. We acknowledge

that this failure stems from two distinct sources: the mechanical contamination bias arising

from multi-arm weighting, and the functional form misspecification inherent in fitting a linear

model to a non-linear surface. While GPHK (IA) reduces the contamination component,

it cannot fully resolve the misspecification. GOATE-DML addresses both simultaneously:

the orthogonal score removes contamination, while the non-parametric learners (Random

Forests) resolve the functional form. The comparison thus highlights the joint necessity of

flexible learning and orthogonal scoring in complex environments.
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Table 2: Headline Results – Averages: Finite–sample performance (Design A)

Linear potential outcomes Non-linear potential outcomes

N Metric OLS IA EW GOATE–DML OLS IA EW GOATE–DML

Panel A: Strong Overlap (γ = 0.6)

1 000
Bias 0.007 0.006 0.008 0.025 0.035 0.055 0.058 0.026

RMSE 0.086 0.088 0.092 0.105 0.113 0.127 0.142 0.115

4 000
Bias 0.005 0.006 0.004 0.003 0.033 0.043 0.041 0.003

RMSE 0.038 0.040 0.041 0.048 0.074 0.090 0.092 0.057

Panel B: Weak Overlap (γ = 1.8)

1 000
Bias 0.012 0.012 0.015 0.166 0.093 0.130 0.147 0.036

RMSE 0.098 0.122 0.164 0.239 0.169 0.234 0.250 0.150

4 000
Bias 0.012 0.015 0.017 0.054 0.106 0.131 0.127 0.021

RMSE 0.049 0.063 0.075 0.100 0.129 0.193 0.196 0.077

Notes: Bias is the mean absolute deviation from the true ATE, and RMSE is the root mean square

error, both averaged across the three treatment arms using the raw results from Tables B.5 and

B.6. These averages reflect the calculations performed in the analysis.

However, the headline results mask a critical failure mode of the linear corrections. While

linear DML (EW) can perform well under strong overlap, the full results in Appendix Table

B.6 reveal its fragility. As shown in Panel B of that table (Weak Overlap), the EW estimator

becomes highly unstable, exhibiting biases as large as 0.336—exceeding even the naive OLS

bias. In contrast, GOATE-DML remains robust across all regimes.

We note that in some weak-overlap cases, such as Arm 3, GOATE-DML converges to a

bias of approximately 0.05 rather than zero. This is theoretically expected: under heteroge-

neous effects, the trimming required to ensure validity shifts the target estimand from the

global ATE to the local GOATE. The simulation confirms that GOATE-DML successfully

trades this small estimand shift for protection against the catastrophic extrapolation errors

that plague linear methods. These results demonstrate that naive OLS is unreliable in the

presence of non-linear confounding and that linear corrections risk severe instability when

overlap is weak. Consequently, GOATE-DML offers the most robust protection against both
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misspecification and weak overlap, with minimal efficiency loss in large samples.

Regarding inference, we report full Monte-Carlo standard errors in Appendix Table B.5.

In the Linear/Strong Overlap design, the average estimated standard error closely matches

the empirical standard deviation of the point estimates, confirming the validity of the asymp-

totic variance formulas derived in Theorem 6.2. Under weak overlap, the standard errors

for GOATE-DML appropriately widen to reflect the reduced effective sample size after trim-

ming, whereas the linear EW estimator yields deceptively narrow confidence intervals around

a biased point estimate.

Remark 7.1 (Consistency with Theoretical Bounds). Derivation in Appendix A.9 estab-

lishes a stability bound of Kn = o(n1/4) to control inverse-propensity moment inflation. We

note that our simulation design with K = 3 satisfies this condition for all sample sizes con-

sidered (e.g., for N = 4, 000, K = 3 ≪ 4, 0001/4 ≈ 7.95). Consequently, the estimator

remains consistent. However, the increased variance observed in the weak overlap regime

(Table 2, Panel B) is empirically consistent with the moment inflation predicted by our cor-

rected theory.

7.3 Results: Continuous Dosage (Design B)

We next evaluate the estimators in the continuous setting with non-linear confounding de-

fined in Equation (14). We compare the naive OLS estimator, the GPHK correction im-

plemented with cubic polynomial controls, and the proposed GOATE-DML estimator using

random forests.

Table 3 reports bias and RMSE across sample sizes ranging from 1,000 to 4,000. Three

patterns characterize the results. First, the OLS estimator is inconsistent. The bias sta-

bilizes at approximately 0.42 regardless of sample size, confirming that linear regression

cannot purge non-linear contamination. Second, linear corrections are insufficient. While

the polynomial-augmented GPHK estimator reduces the bias relative to OLS, it fails to

eliminate it, stabilizing at a bias of approximately 0.06. This underscores a limitation of

parametric corrections: they require the researcher to correctly specify the functional form

of the confounding mechanism. Third, the GOATE-DML estimator is consistent. It achieves
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near-zero bias across all sample sizes, ranging from −0.007 to −0.002. Furthermore, the pre-

cision of the estimator improves at the expected rate; the RMSE declines from 0.067 at

n = 1, 000 to 0.035 at n = 4, 000, consistent with
√
n-convergence. This validates the the-

oretical result that adaptive nuisance estimation, combined with overlap-based trimming,

effectively isolates the causal parameter even under complex confounding.

Table 3: Continuous dose simulation: bias and RMSE under non-linear confounding

Bias RMSE

Estimator N = 1,000 N = 2,000 N = 4,000 N = 1,000 N = 2,000 N = 4,000

GOATE–DML −0.007 −0.015 −0.002 0.067 0.048 0.035

GPHK (Poly) 0.077 0.064 0.078 0.108 0.085 0.086

OLS (näıve) 0.443 0.421 0.446 0.461 0.430 0.450

Notes: 100 Monte-Carlo repetitions. The data generating process involves sinusoidal

confounding g(W ) = sin(2W ) + 0.5W 2 + 2I(W > 0.5). OLS uses linear controls; GPHK

uses cubic polynomial controls; GOATE–DML uses Random Forests with data-adaptive

trimming.

Figure 7.3 visualizes the distribution of the estimators for the N = 2, 000 case. The

contrast is striking. The sampling distribution of the OLS estimator (dashed grey curve)

does not even overlap with the true parameter value, illustrating how contamination bias

can lead to misleading inference with probability approaching one. The GPHK estimator

(dash-dot curve) shifts the distribution closer to the truth but remains distinct from it;

the polynomial approximation purges some, but not all, of the non-linear confounding. In

contrast, the GOATE-DML estimator (solid black curve) is tightly centered on the true effect

τ = 1. This visual evidence confirms that our semi-parametric approach effectively learns

the irregular confounding surface that defeats parametric adjustments.
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Figure 1: Sampling Distributions of Estimators under Non-Linear Confounding. The figure
displays kernel density estimates of the treatment effect τ̂ across 2,000 Monte Carlo repli-
cations (N = 2, 000). The vertical dotted line marks the true effect (τ = 1). Naive OLS
(dashed grey) is severely biased. The GPHK correction (dash-dot) reduces bias but remains
off-center due to functional form misspecification. GOATE-DML (solid black) is centered on
the true parameter.

The figure displays kernel density estimates of the treatment effect τ̂ across 2,000 Monte

Carlo replications (N = 2, 000). The vertical dotted line marks the true effect (τ = 1).

Naive OLS (dashed grey) is severely biased. The GPHK correction (dash-dot) reduces bias

but remains off-center due to functional form misspecification. GOATE-DML (solid black)

is centered on the true parameter.

The figure displays kernel density estimates of the treatment effect τ̂ across 2,000 Monte

Carlo replications (N = 2, 000). The vertical dotted line marks the true effect (τ = 1).

Naive OLS (dashed grey) is severely biased. The GPHK correction (dash-dot) reduces bias

but remains off-center due to functional form misspecification. GOATE-DML (solid black)

is centered on the true parameter.

We further evaluate robustness to functional form complexity in Appendix Figure B.1.

As the non-linearity of the confounding function increases, the bias of OLS and polynomial

corrections grows rapidly, while the GOATE-DML estimator remains negligible. This sug-

gests that the proposed method offers substantial protection against specification error in
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environments where the true selection mechanism is unknown.

8 Empirical Applications

We illustrate the practical utility of the GOATE–DML estimator by re-analyzing four distinct

experimental and observational settings. These applications were selected to stress-test the

estimator across the spectrum of empirical difficulty: Krueger (1999) (Project STAR) tests

efficiency in a standard randomized controlled trial (RCT); de Mel et al. (2013) provides a

benchmark in a saturated design; Drexler et al. (2014) tests robustness under weak overlap;

and Weisburst (2019) tests bias correction in a continuous-dose setting. We detail the Project

STAR and Weisburst analyses below. The analyses of de Mel et al. (2013) (a saturated

benchmark) and Drexler et al. (2014) (a weak overlap stress test) are summarized in Table

4, with full details provided in Appendix C.

8.1 Project STAR: Efficiency and Non-Linear Bias

We first revisit the Project STAR class-size experiment. Although treatment was random-

ized, the presence of continuous covariates (e.g., teacher experience) allows for potential

non-linear confounding if the OLS specification is not fully saturated. Table 4 (Panel A)

summarizes the results. For the Small Class treatment (τ1), GOATE–DML estimates an

effect of 4.49 points. A more striking pattern emerges in the Teacher Aide treatment (τ2).

Here, OLS estimates a statistically insignificant effect of 0.28 points. In contrast, GOATE–

DML identifies a larger, marginally significant effect of 0.61 points. Furthermore, we observe

theoretical efficiency gains: the standard error for GOATE–DML (0.58) is approximately

16% smaller than the OLS standard error (0.69). In this ”well-behaved” setting, GOATE–

DML sharpens inference without sacrificing stability.
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Table 4: GOATE–DML: Summary of Empirical Applications

Estimator (Est. / SE)

Application / Treatment OLS GPHK (CW) GOATE–DML

A. Efficiency & Bias Correction (RCT)

Project STAR: Small Class (τ1) 5.25

(0.74)

5.02

(0.68)

4.49

(0.70)

Project STAR: Aide Class (τ2) 0.28

(0.69)

0.28

(0.69)

0.61

(0.58)

B. Safety Check (Saturated RCT)

de Mel et al.: Formalization (τ) 0.27

(0.05)

0.27

(0.05)

0.28

(0.05)

C. Robustness under Weak Overlap (RCT)

Drexler et al.: Rule-of-Thumb (τ) -692

(801)

-661

(843)

-575

(958)

D. Continuous Dose & Non-Linearity (Observational)

Weisburst: Rookie Share (∂dµ) 9.90

(4.03)

8.77

(4.07)

17.16

(9.11)

Notes: Standard errors are in parentheses. All estimators use cluster-robust inference.

Panel D estimates the Average Partial Effect of a continuous dose.

8.2 de Mel et al. (2013): The Saturated Benchmark

Next, we analyze the experiment of de Mel et al. (2013), which examines the returns to

capital among microenterprises. This setting features clustered assignment, but crucially,

the covariates consist solely of binary strata indicators. In such a design, a fully interacted

OLS model is ”saturated”—it can flexibly estimate the conditional mean for every stratum

without functional form error. As shown in Panel B, the GOATE–DML estimate (0.28)

is effectively identical to the OLS and GPHK estimates (0.27). This result is theoretically

expected: when the OLS model is saturated, there is no misspecification bias to correct.

This provides an important safety check, confirming that in simple linear settings, our non-

parametric estimator recovers the standard experimental benchmark without introducing
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noise or artifacts.

8.3 Weisburst (2019): Unmasking Non-Linear Bias in Continuous

Doses

Finally, to demonstrate the estimator’s performance in a continuous treatment setting, we re-

analyze data from Weisburst (2019), which investigates the effect of police officer inexperience

on use-of-force incidents. The treatment variable Di ∈ [0, 1] is the share of ”rookie” officers

assigned to a given beat-shift, and the outcome is the rate of use-of-force. Unlike the discrete-

treatment cases, this application requires estimating the Average Partial Effect (APE) of a

continuous dose, where contamination arises from global smoothing of the dose-response

function.

Table 4 (Panel D) reports the results. The OLS estimator implies that a 10 percentage

point increase in rookie share increases use-of-force by 0.99 units (point estimate: 9.90).

However, GOATE–DML reveals a much steeper marginal effect of 17.16, nearly doubling the

OLS estimate. This divergence suggests that the global linear model severely attenuates the

true local effect by averaging over sparse, flatter regions in the tails of the dose distribution.

Figure 2 decomposes this result visually. Panel (a) plots the estimated dose-response

function µ̂(d). The non-parametric GOATE–DML curve (solid line) displays a sharp rise in

use-of-force as rookie share increases from 0 to 0.2 — the region with most empirical support

(shown in the histogram). In contrast, the OLS fit (dashed line) is flattened by the long,

sparse right tail of the dose distribution (D > 0.3), producing a downward-biased slope.

Panel (b) presents the estimated marginal effect curve ∂µ̂/∂d. While OLS imposes a

constant slope of 9.90 across all values of D, GOATE–DML uncovers a sharply rising local

slope — exceeding 25 — in the region of dense support. This discrepancy reinforces the

presence of substantial non-linearity that OLS cannot capture.

Panel (c) visualizes the data-adaptive trimming strategy. Units with near-deterministic

treatment assignment (extreme rookie share) are removed to ensure overlap validity. The

GOATE–DML estimate thus reflects only the portion of the data where causal comparisons

are credible. The accompanying increase in standard error — from 4.03 (OLS) to 9.11
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Figure 2: Non-Linearity in Continuous Treatment (Weisburst, 2019). Panel (a) compares
the global OLS fit (dashed) to the flexible GOATE–DML fit (solid). OLS smooths over the
steep increase in use-of-force between D = 0 and D = 0.2. Panel (b) plots the local slope
(APE), revealing a high sensitivity in the region of dense support. Panel (c) displays the
trimming of observations with weak overlap, reinforcing the role of data-adaptive restriction
in valid inference.

(GOATE) — is an honest reflection of this localized estimation in a non-parametric setting.

It communicates the true uncertainty of estimating steep effects under weak overlap, without

relying on extrapolation.

9 Conclusion

Standard linear regression remains the dominant tool in empirical economics, yet its va-

lidity in multi-arm and continuous-treatment settings relies on the restrictive assumption
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that the propensity score enters the outcome model linearly. Deviations from this assump-

tion introduce contamination bias, conflating the causal effect of the treatment of interest

with unrelated variation from other treatment levels. This paper develops a unified semi-

parametric framework to address this identification failure without imposing functional form

restrictions. By deriving a single orthogonal score that characterizes identification for both

discrete and continuous treatments, we show that recent linear corrections strictly arise as

special cases of our framework that hold only under global linearity. The proposed estima-

tor, implemented via cross-fitted double machine learning, achieves semiparametric efficiency

bounds while accommodating high-dimensional, non-linear nuisance functions.

A central contribution of our analysis is the formal treatment of weak overlap. We

demonstrate that inverse-probability weighting methods are intrinsically fragile when the

density of the generalized propensity score accumulates mass near zero. To ensure valid

inference, we introduce the GOATE-DML, which utilizes a data-adaptive trimming rule to

bound the Riesz representer. This approach explicitly trades a marginal shift in the target

estimand for bounded variance, ensuring robustness in regimes where global extrapolation

is statistically infeasible. Our simulation results confirm this theoretical distinction: while

linear corrections collapse under weak overlap, exhibiting biases that exceed those of naive

OLS, our estimator remains consistent and stable.

These methodological refinements have immediate practical implications. Our empirical

findings reveal that correcting for contamination can substantially alter policy conclusions,

nearly doubling the estimated marginal productivity of policing relative to conventional

fixed-effects specifications. This suggests that standard regression methods may systemati-

cally misstate intervention effects when treatment intensity is correlated with other treatment

levels or non-linear covariates. As empirical designs increasingly incorporate complex treat-

ment structures, shifting from global linear extrapolation to local, overlap-aware estimation

strategies is essential for credible policy evaluation.

Finally, while our framework accommodates high-dimensional nuisance functions, our

theoretical analysis highlights a fundamental limit: the number of treatment arms must

grow no faster than o(n1/4) to ensure the stability of inverse-probability weighting. Future

work may explore regularization techniques to relax this constraint.
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Data Availability Statement

The replication code and minimal datasets required to reproduce the results in this paper are

available at https://github.com/tamercetin/GOATE-DML. The empirical analysis relies on

public data from https://www.openicpsr.org/openicpsr/project/207983/version/V1/view.
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Online Appendix

Debiased Machine Learning for Contamination-Free

Causal Estimation with Discrete and Continuous

Treatments

Tamer Çetin

A Proofs of Main and Auxiliary Results

A.1 Proof of Proposition 2.1

The result follows from the definition of the conditional expectation over a sub-population.

By the Law of Iterated Expectations and Assumption 2.1 (Unconfoundedness): θGOATE(d) =

E[Y (d)−Y (0) | W ∈ V ] = E[1{W∈V}(Y (d)−Y (0))]
P (W∈V) = E[1V (W )E[Y (d)−Y (0)|W ]]

E[1V (W )]
= E[1V (W )(µ(d,W )−µ(0,W ))]

E[1V (W )]
.

This matches the Riesz representation where the weight is 1V(W ).

A.2 Proof of Lemma 3.1

Recall the score function for the continuous treatment case is φ(c)(Z; θ, η) = s(D,W ){Y −

m(D,W )} + ∂dm(D,W ) − θ, where the nuisance parameter is η = (m, f) and the score is

s(d,W ) = ∂d log f(d|W ) = (∂df(d|W ))/f(d|W ).

(i) Identification. We show that E[φ(c)(Z; θ, η)] = 0 if and only if θ is the true aver-

age partial effect. By the law of iterated expectations, E[φ(c)(Z; θ, η)] = E
[
s(D,W ){Y −

m(D,W )}
]
+E
[
∂dm(D,W )

]
−θ = EW

[
ED|W

[
s(D,W ){Y −m(D,W )}

∣∣W ]]+E[∂dm(D,W )
]
−

θ.

The inner expectation is taken overD conditional onW : ED|W
[
s(D,W ){Y−m(D,W )}

∣∣W ] =∫
D s(d,W )

(
E[Y |D = d,W ] −m(d,W )

)
f(d|W )dd. At the true nuisance function m(d,W ) =

E[Y |D = d,W ] (by Assumption 2.2), the term in parentheses is identically zero for all d.

Thus, the first term vanishes: E
[
s(D,W ){Y −m(D,W )}

]
= 0. The moment condition then

simplifies to: E[φ(c)(Z; θ, η)] = E
[
∂dm(D,W )

]
− θ. This expectation is zero if and only if

θ = E[∂dm(D,W )], which confirms that the score correctly identifies the target parameter.

0



(ii) Neyman Orthogonality (Pathwise Derivative). We now show that the estimator

is insensitive to small, regular perturbations in the nuisance functions. Let ηr = (m +

rhm, f + rhf ) be a perturbed nuisance parameter along a path indexed by r, where h =

(hm, hf ) is a regular perturbation in the nuisance tangent space. The score along this path

is sr(d,W ) = (∂dfr(d|W ))/fr(d|W ). The moment condition as a function of r is K(r) =

E
[
sr(D,W ){Y −mr(D,W )} + ∂dmr(D,W ) − θ

]
.

We seek to show that the Gateaux derivative dK(r)
dr

∣∣∣
r=0

is zero. We compute the derivative

term by term.

Derivative of the first component: Using the product rule, d
dr
E
[
sr{Y −mr}

]∣∣∣
r=0

=

E

[(
dsr
dr

∣∣∣
r=0

)
{Y −m} + s

(
d(Y−mr)

dr

∣∣∣
r=0

)]
= E

[(
dsr
dr

∣∣∣
r=0

)
{Y −m} − s(D,W )hm(D,W )

]
.

The term E[·×{Y −m}] is an expectation of a random variable multiplied by the true pop-

ulation residual Y −m(D,W ). By the law of iterated expectations, this term is zero because

E[Y−m(D,W )|D,W ] = 0. Thus, this part of the derivative simplifies to −E[s(D,W )hm(D,W )].

Derivative of the second component: d
dr
E
[
∂dmr(D,W )

]∣∣∣
r=0

= E
[
∂dhm(D,W )

]
. Combining

the terms, the full Gateaux derivative is: dK(r)
dr

∣∣∣
r=0

= E
[
∂dhm(D,W ) − s(D,W )hm(D,W )

]
.

We now show this expression equals zero by using integration by parts. E [∂dhm − shm] =

EW

[∫
D

(
∂dhm(d,W )

)
f(d|W )dd−

∫
D s(d,W )hm(d,W )f(d|W )dd

]
= EW

[∫
D

(
∂dhm(d,W )

)
f(d|W )dd−

∫
D
∂df(d|W )
f(d|W )

hm(d,W )f(d|W )dd
]

= EW

[∫
D

(
f(d|W )∂dhm(d,W ) − hm(d,W )∂df(d|W )

)
dd
]
. The integrand is the result of the

product rule for derivatives: f · ∂dhm + hm · ∂df = ∂d(f · hm). Therefore, the expression

becomes: EW

[∫
D ∂d

(
f(d|W )hm(d,W )

)
dd
]
.

By the Fundamental Theorem of Calculus, this integral evaluates to the function at the

boundaries of the support D: EW

[[
f(d|W )hm(d|W )

]d=supD
d=inf D

]
.

By our explicit Boundary Condition (Assumption 3.1), this term is zero. Thus, the

Gateaux derivative is zero: dK(r)
dr

∣∣∣
r=0

= 0.

This confirms that the moment condition is Neyman-orthogonal to the nuisance param-

eter η = (m, f), completing the proof.
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A.3 Auxiliary identity for the multi-arm score

For k ∈ {1, . . . , K} write Xik := Dik−pk(Wi)
1−pk(Wi)

, pk(W ) = P (Di = k | Wi), and recall that

mk(W ) = E[Yi | Di = k,Wi] as well as τk(W ) = mk(W ) −m0(W ) for k ≥ 1.

Lemma A.1. For every square-integrable ξ(W ) and each arm k the following two identities

hold:

(a) E
[
Xik ξ(Wi)

]
= 0, (15)

(b) E
[
Xik {Yi −mk(Wi)} | Wi

]
= pk(Wi) τk(Wi). (16)

Proof. (a) By construction E[Dik | Wi] = pk(Wi); hence E
[
Xik | Wi

]
= E[Dik|Wi]−pk(Wi)

1−pk(Wi)
= 0,

and taking the unconditional expectation yields (15).

(b) Write the potential–outcome decomposition Yi = µ(Wi)+
∑K

ℓ=1Diℓ τℓ(Wi)+εi, E[εi |

Di,Wi] = 0,withµ(W ) = m0(W ). Because mk(W ) = µ(W )+ τk(W ) we have Yi−mk(Wi) =∑K
ℓ=1Diℓ τℓ(Wi) − τk(Wi) + εi.

Multiplying by Xik and taking conditional expectation, E
[
Xik {Yi − mk(Wi)} | Wi

]
=

pk(Wi) τk(Wi),becauseE[Xik | Wi] = 0 by part (a) of the lemma and E[εi | Di,Wi] = 0. This

establishes (16).

A.4 Proof of Lemma 3.2

Recall the influence function for the ATE of arm k versus control: φ⋆k(Z; θk, η) = mk(W ) −m0(W )︸ ︷︷ ︸
A1

+
Dik

pk(W )
(Y −mk(W ))︸ ︷︷ ︸

A2

− Di0

p0(W )
(Y −m0(W ))︸ ︷︷ ︸

A3

−θk.

The nuisance parameter is η = (m0, . . . ,mK , p0, . . . , pK).

(i) Identification and Double Robustness. We first show that E[φ⋆k] = 0 if either (a) the

outcome models mℓ are correct or (b) the propensity models pℓ are correct. Let E[Y |D =

ℓ,W ] = m∗
ℓ(W ) and P (D = ℓ|W ) = p∗ℓ(W ) be the true conditional functions.

Case 1: Outcome models are correct (mℓ = m∗
ℓ). By the law of iterated expecta-

tions and unconfoundedness (Assumptions 2.1 and 2.2): E[A2] = E
[

Dik

pk(W )
(Y −mk(W ))

]
=

2



EW

E [ Dik

pk(W )
(Y −mk(W ))

∣∣∣∣W
] = EW

[
1

pk(W )
P (Di = k|W )E[Y −mk(W )|Di = k,W ]

]
=

EW

[
p∗k(W )

pk(W )
(m∗

k(W ) −mk(W ))
]

= 0.

Similarly, E[A3] = 0. The total expectation is E[φ⋆k] = E[m∗
k(W ) −m∗

0(W )] − θk. This

is zero if θk = E[Y (k) − Y (0)].

Case 2: Propensity models are correct (pℓ = p∗ℓ). E[A2] = E
[

Dik

p∗k(W )
{Y −mk(W )}

]
=

EW

[
1

p∗k(W )
E[DikY −Dikmk(W )|W ]

]
= EW

[
1

p∗k(W )
(p∗k(W )m∗

k(W ) − p∗k(W )mk(W ))
]

= E[m∗
k(W ) − mk(W )]. Similarly, E[A3] =

E[m∗
0(W ) −m0(W )]. The total expectation is: E[φ⋆k] = E[mk(W ) −m0(W )] +E[m∗

k(W ) −

mk(W )] − E[m∗
0(W ) −m0(W )] − θk

= E[m∗
k(W ) −m∗

0(W )] − θk. This is zero if θk = E[Y (k) − Y (0)]. In either case, the score

correctly identifies the ATE.

(ii) Neyman Orthogonality. We show that the moment is locally insensitive to pertur-

bations in η. Let ηr = η0 + rh be a perturbation, where η0 is the true nuisance param-

eter and h = (hm, hp) is a regular perturbation. We compute the Gateaux derivative of

K(r) = E[φ⋆k(Z; θk, ηr)] at r = 0. The derivative dK(r)
dr

∣∣∣
r=0

is the expectation of the sum

of derivatives of φ⋆k with respect to each nuisance function, multiplied by the corresponding

perturbation.

• Perturbation ofmk by hm,k: The terms in φ⋆k depending onmk aremk(W )− Dik

pk(W )
mk(W ).

The derivative w.r.t. mk is
(

1 − Dik

pk(W )

)
. The contribution to the Gateaux derivative is

E

[(
1 − Dik

pk(W )

)
hm,k(W )

]
. By iterated expectations, E

[
1 − Dik

pk(W )

∣∣∣W] = 1 − pk(W )
pk(W )

=

0. So this term is zero.

• Perturbation of m0 by hm,0: The terms are −m0(W ) + Di0

p0(W )
m0(W ). The derivative

w.r.t. m0 is
(

Di0

p0(W )
− 1
)

. The contribution is E

[(
Di0

p0(W )
− 1
)
hm,0(W )

]
, which is zero

by the same logic.

• Perturbation of pk by hp,k: The term is Dik

pk(W )
{Y − mk(W )}. The derivative w.r.t.

pk is − Dik

pk(W )2
{Y − mk(W )}. The contribution is E

[
− Dik

pk(W )2
{Y −mk(W )}hp,k(W )

]
.

This expectation is zero because we evaluate at the true nuisance η0, where mk(W ) =

3



m∗
k(W ). As shown in the identification part, E[Dik{Y −m∗

k(W )}|W ] = 0. Thus, this

term is zero.

• Perturbation of p0 by hp,0: The term is − Di0

p0(W )
{Y −m0(W )}. The derivative w.r.t. p0

is + Di0

p0(W )2
{Y −m0(W )}. The contribution E

[
Di0

p0(W )2
{Y −m0(W )}hp,0(W )

]
is zero by

the same logic.

• Perturbations of mℓ, pℓ for ℓ /∈ {0, k}: The score φ⋆k does not depend on these nuisance

functions, so the derivatives are zero.

Since all components of the Gateaux derivative are zero, we have d
dr
E[φ⋆k(Z; θk, ηr)]

∣∣∣
r=0

=

0. This establishes Neyman orthogonality.

A.5 Proof of Theorem 6.1

Throughout this proof the trimming threshold τn is fixed by design (no data–dependent tun-

ing) and satisfies nτ 2δn → 0 with the δ in Assumption 2.3. Write Ti = 1{mink≤Kn pk(Wi) ≥

τn}, φi = φ(Zi; θk, η0), and let η̂i = η̂(−j(i)) be the fold-specific nuisance vector used for

observation i.

1. Moment expansion. The DML estimator solves 1
n

∑n
i=1 Ti ψ(Zi; θ̂k, η̂i) = 0, and ∂θψ ≡

−1. A first-order Taylor expansion around θk gives

√
n (θ̂k − θk) =

1√
n

n∑
i=1

Ti ψ(Zi; θk, η̂i) + op(1). (17)

Add and subtract the population influence function to obtain
√
n(θ̂k−θk) =

1√
n

n∑
i=1

Tiφi︸ ︷︷ ︸
Sn

+

Rn︸︷︷︸
remainder

+ Bn︸︷︷︸
bias

+op(1), where Rn = 1√
n

∑n
i=1 Ti

{
ψ(Zi; θk, η̂i) − φi

}
, Bn =

√
n
{
θk(τn) − θk

}
.

2. Bounding the remainder Rn = op(1). Decompose Rn = Rn,1 + Rn,2 with Rn,1 =

1√
n

∑n
i=1(Ti − T̂i)ψ(Zi; θk, η̂i), Rn,2 = 1√

n

∑n
i=1 Ti

{
ψ(Zi; θk, η̂i) − φi

}
.

Indicator error (Rn,1). By Lemma A.5, uniformly over τ ∈ Gn, Pr
(
T̂i(τ) ̸= Ti(τ)

)
= o(n−1/2)

under Assumptions 2.6 and 2.5. Hence Rn,1 = op(1) uniformly on the grid.

4



Nuisance error (Rn,2). Write η̂i = η0 +∆i. The mean-value expansion ψ(Zi; θk, η̂i)−φi =

∂ηψ(Zi; θk, η0)[∆i] + 1
2
∂2ηψ(Zi; θk, η̃i)[∆i,∆i], η̃i between η0 and η̂i, shows that every term

in Rn,2 is either (i) linear in one nuisance error or (ii) quadratic in two errors. Because

the score is Neyman-orthogonal (Lemmas 3.1–3.2) the population expectation of the linear

term vanishes, and the empirical average is op(1) by the cross-fit stability Lemma A.4. The

quadratic remainder is bounded via Cauchy–Schwarz: E
[
Ti | ∂2ηψ[∆i,∆i]|

]
≲ ∥∆i∥2L2 =

op(n
−1/2), so its

√
n-scaled sum is op(1). Thus Rn,2 = op(1) and hence Rn = op(1).

3. Trimming bias Bn = op(1). By Assumption 2.3 |θk(τn) − θk| ≤ Cτ δn, so |Bn| =
√
n |θk(τn) − θk| ≤ C

√
n τ δn = o(1) because nτ 2δn → 0.

4. Asymptotic normality of Sn. Define Xni = n−1/2Tiφi. The array {Xni}i≤n is i.i.d.

across i with E[Xni] = 0 and
∑n

i=1 Var(Xni) = E[Tiφ
2
i ] → Vk by Lemma A.2. A Lyapunov

(or Lindeberg) condition holds because E[φ4
i ] < ∞ uniformly on {Ti = 1}. Hence Sn =∑n

i=1Xni
d−→ N(0, Vk).

5. Putting the pieces together. Gathering terms,
√
n(θ̂k−θk) = Sn+Rn+Bn+op(1) =

Sn + op(1)
d−→ N(0, Vk).

6. Consistency of the plug-in variance estimator. Write V̂k =
(

1
n

∑
i Ti

)−2
1
n

∑n
i=1 Ti ψ(Zi; θ̂k, η̂i)

2.

Because Ti is deterministic given Wi, an ordinary LLN plus Lemma A.4 shows 1
n

∑
i Ti →p

P (Ti = 1) = 1 and 1
n

∑
i Tiψ

2
i →p E[Tiφ

2
i ] = Vk. Therefore V̂k

p−→ Vk.

A.6 Regularity Lemmas for Trimmed Cross–Fitting

Throughout this subsection Ti(τ) = 1{mink pk(Wi) ≥ τ} (or its density analogue) denotes

the trimming indicator, and φi = φ(Zi; θ, η) is the *population* influence function.

Lemma A.2 (Finite moments on the trimmed support). If Assumptions 2.3–2.6 hold and

supk≤Kn
E[φ⋆k(Z)4] <∞, then for every fixed τ > 0 supi≤nE

[
Ti(τ)φ2

i

]
<∞, supi≤nE

[
Ti(τ)φ4

i

]
<

∞.

Proof. On {pk(W ) ≥ τ} we have Dik/pk(W ) ≤ 1/τ ; the definition of φi and the bounded

fourth moment assumption give the result.

5



Lemma A.3 (Uniform LLN on a data–dependent trimmed set). Let G = {τ1 < · · · < τG}

be the finite grid in Section 6.3. Then supτ∈G

∣∣∣ 1n∑n
i=1 Ti(τ)φi − E[Ti(τ)φi]

∣∣∣ = op(1),

supτ∈G

∣∣∣ 1n∑n
i=1 Ti(τ)φ2

i − E[Ti(τ)φ2
i ]
∣∣∣ = op(1).

Proof. The function classes {T (τ)φ : τ ∈ G} and {T (τ)φ2 : τ ∈ G} are finite; combine

Lemma A.2 with the finite-class LLN (Lemma 2.4 of Van der Vaart and Wellner, 1996).

Lemma A.4 (Cross-fit stability of the empirical score). Let η̂(−j) be the fold-j nuisance

estimate and define φ̂i = φ(Zi; θ, η̂
(−j(i))). Under Assumptions 2.6–2.3, 1√

n

∑n
i=1 Ti(τ)

{
φ̂i −

φi
}

= op(1) uniformly in τ ∈ G.

Proof. Expand φ̂i − φi by a first-order Gateaux derivative; each term is a product of one

score component and one n−1/4-rate first-stage error. Cauchy–Schwarz, the ML rate in

Assumption 2.6, and Lemma A.2 yield a bound of order n−1/4; multiplying by
√
n gives

op(1). See Appendix A.5 (Proof of Theorem 6.1) for an identical calculation regarding the

nuisance error term Rn,2.

Lemmas A.2–A.4 together justify (i) the uniform MSE estimator for τ , (ii) the plug-in

variance formula, and (iii) all stochastic equicontinuity steps in the main CLT.

Lemma A.5 (Indicator disagreement under margin). Under Assumptions 2.6 and 2.5, uni-

formly over τ ∈ Gn, Pr
(
T̂i(τ) ̸= Ti(τ)

)
≤ C

∑
ℓ≤K E

[
|p̂(−i)ℓ (Wi) − pℓ(Wi)|κ

]
= o

(
n−1/2

)
.

An identical bound holds in the continuous case with (pℓ) replaced by f .

Proof. Consider the discrete case where Ti(τ) = 1{mink pk(Wi) ≥ τ}. The estimated in-

dicator is T̂i(τ) = 1{mink p̂k(Wi) ≥ τ}. The event {T̂i(τ) ̸= Ti(τ)} occurs only if the

estimation error ”crosses” the threshold τ . Specifically, let ∆i = maxk |p̂k(Wi) − pk(Wi)|.

If |mink pk(Wi) − τ | > ∆i, then the true and estimated propensities are on the same side

of the threshold τ , implying T̂i = Ti. Therefore, disagreement implies the margin condition

is violated by the error: 1{T̂i ̸= Ti} ≤ 1{|mink pk(Wi) − τ | ≤ ∆i}. Taking expectations:

P (T̂i ̸= Ti) ≤ E
[
P
(
|mink pk(Wi) − τ | ≤ ∆i | Tn

)]
, where Tn denotes the training sample.

By Assumption 2.5 (Anti-concentration), P (| . . . | ≤ h) ≤ chκ. Thus, conditional on the

nuisance error ∆i: P (T̂i ̸= Ti | Tn) ≤ c∆κ
i . By Assumption 2.6, ∥p̂k − pk∥2 = op(n

−1/4).

6



By Jensen’s inequality (concavity of x 7→ xκ/2 for κ ≤ 2 is not required, we use direct mo-

ment bounds), E[∆κ
i ] converges at the appropriate rate. Specifically, with κ = 1 or κ = 2

(standard margin assumptions), the rate is controlled by the L2 or L1 convergence of the

nuisance estimators, ensuring P (T̂i ̸= Ti) = o(n−1/2). The continuous case follows identical

logic replacing pk with f .

A.7 Proof of Theorem 6.2

For simplicity, we present the proof for a generic parameter θ and score ψ(Z; θ, η) that

satisfies the conditions of the theorem. Let η0 be the true nuisance functions, η̂i be the

cross-fitted estimate for observation i, and φi = ψ(Zi; θ0, η0) be the true influence function.

Let τ̂ be the data-driven trimming threshold.

The DML estimator θ̂ is defined as the solution to 1
n

∑n
i=1 T̂i(τ̂)ψ(Zi; θ̂, η̂i) = 0, where

T̂i(τ) = 1{mink p̂
(−i)
k (Wi) ≥ τ}. The proof consists of three main parts: establishing a linear

representation for the estimator, showing the asymptotic normality of the leading term, and

proving the consistency of the variance estimator.

1. Linear Representation of
√
n(θ̂−θ0). Since ∂θψ ≡ −1, a first-order Taylor expansion of the

moment condition around the true parameter θ0 yields:
√
n(θ̂−θ0) = 1√

n

∑n
i=1 T̂i(τ̂)ψ(Zi; θ0, η̂i)+

op(1). We decompose the leading term on the right-hand side by adding and subtracting

terms involving the true influence function φi and the true trimming indicator Ti(τ) =

1{mink pk(Wi) ≥ τ}:

√
n(θ̂ − θ0) =

1√
n

n∑
i=1

Ti(τ̂)φi︸ ︷︷ ︸
Sn: Main Term

+ Rn︸︷︷︸
Remainder

+ Bn︸︷︷︸
Bias

+op(1). (18)

The remainder Rn and bias Bn are defined as: Rn = 1√
n

∑n
i=1

[
T̂i(τ̂)ψ(Zi; η̂i) − Ti(τ̂)φi

]
Bn =

√
nE[(Ti(τ̂) − 1)φi].

We now show that both Rn and Bn are asymptotically negligible.

Bounding the Remainder (Rn = op(1)). The remainder can be split into two parts:

Rn = Rn,1 + Rn,2, where Rn,1 = 1√
n

∑n
i=1(T̂i(τ̂) − Ti(τ̂))ψ(Zi; η̂i)(Indicator Error)Rn,2 =

7



1√
n

∑n
i=1 Ti(τ̂)(ψ(Zi; η̂i) − φi)(Nuisance Error) The Nuisance Error Term (Rn,2). To show

Rn,2 = op(1), we must explicitly derive the difference ψ(Zi; η̂i)−φi. We do so for the discrete-

arm score φ∗
k; the logic for the continuous case is analogous. Let η̂ = (m̂, p̂) and η0 = (m, p).

ψ∗
k(Z; η̂) − ψ∗

k(Z; η0) =
(
[m̂k −mk] − [m̂0 −m0]

)
+
(
Dik

p̂k
(Y − m̂k) − Dik

pk
(Y −mk)

)
−
(
Di0

p̂0
(Y − m̂0) − Di0

p0
(Y −m0)

)
. Consider the term for arm k. By adding and subtract-

ing Dik

pk
(Y − m̂k), we get: Dik

p̂k
(Y − m̂k) − Dik

pk
(Y −mk) =

(
Dik

p̂k
(Y − m̂k) − Dik

pk
(Y − m̂k)

)
+(

Dik

pk
(Y − m̂k) − Dik

pk
(Y −mk)

)
= Dik(Y −m̂k)

(
1
p̂k

− 1
pk

)
−Dik

pk
(m̂k−mk) = −Dik(Y−m̂k)

pkp̂k
(p̂k−

pk) − Dik

pk
(m̂k − mk). Substituting this back into the full expression for the difference and

rearranging terms gives: ψ∗
k(η̂) − φ∗

k(η0) = (m̂k −mk)

(
1 − Dik

pk

)
− (m̂0 −m0)

(
1 − Di0

p0

)
︸ ︷︷ ︸

Term (I): Pathwise derivative w.r.t. m

−Dik(Y −mk)

p2k
(p̂k − pk) +

Di0(Y −m0)

p20
(p̂0 − p0)︸ ︷︷ ︸

Term (II): Pathwise derivative w.r.t. p

−Dik(Y −mk)

pk

(
1

p̂k
− 1

pk
+
p̂k − pk
p2k

)
(p̂k − pk) + . . .︸ ︷︷ ︸

Term (III): Second-order and higher terms

+
Dik

pkp̂k
(m̂k −mk)(p̂k − pk) − . . .︸ ︷︷ ︸

Term (IV): Cross-product terms

Neyman

orthogonality implies that the expectation of Terms (I) and (II) is zero. The DML framework

with cross-fitting is designed specifically to ensure that the sample average of these first-order

pathwise derivatives is asymptotically negligible. The remaining terms, (III) and (IV), are

products of at least two nuisance function errors. For example, a typical cross-product term

is Dik

pkp̂k
(m̂k −mk)(p̂k − pk). The contribution of such terms to

√
nRn,2 is bounded by sums

like: 1√
n

∑n
i=1 Ti(τ̂) Dik

pkp̂k
(m̂

(−i)
k −mk)(p̂

(−i)
k − pk).

By the Cauchy-Schwarz inequality, the expectation of the absolute value of this term is

bounded by:
√
n · E

[
Ti
pkp̂k

]
· ∥m̂k −mk∥L2(P ) · ∥p̂k − pk∥L2(P ).

Under Assumption 2.5, this is
√
n ·O(1) ·op(n−1/4) ·op(n−1/4) = op(1). A formal argument

using empirical process theory confirms that the sum of all such second-order terms is op(1).

Thus, Rn,2 = op(1), and the full remainder is Rn = op(1).

Bounding the Trimming Bias (Bn = op(1)). The bias term Bn captures the effect

of discarding observations with low estimated propensity scores. Its definition is: Bn =
√
nE[(Ti(τ̂) − 1)φi] = −

√
nE[1{Ti(τ̂) = 0}φi].

To bound its magnitude, we apply the Cauchy-Schwarz inequality for expectations,
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which states that for any two random variables X and Y , |E[XY ]| ≤
√
E[X2]E[Y 2].

Let X = φi and Y = 1{Ti(τ̂) = 0}. |Bn| =
√
n
∣∣∣E [φi · 1{Ti(τ̂) = 0}

]∣∣∣ ≤ √
n
√
E[φ2

i ] ·√
E
[(
1{Ti(τ̂) = 0}

)2]
(by Cauchy-Schwarz) =

√
n
√
V ·
√
E
[
1{Ti(τ̂) = 0}

]
(since 12 = 1)

=
√
n
√
V ·
√
P (Ti(τ̂) = 0). By Assumption 2.3, the probability of being trimmed is controlled

by the threshold τn: P (Ti(τ̂) = 0) = P (mink pk(W ) < τ̂) = Op(τ̂
δ).

Substituting this into our bound gives: |Bn| ≤
√
n ·

√
V ·
√
Op(τ̂ δ) = Op(

√
n · τ̂ δ/2).

The theorem’s condition requires nτ δn → 0 for all fixed τn on the grid. Since Lemma 6.2

shows that the data-driven τ̂ converges in probability to a value on this grid (or zero), the

condition implies that nτ̂ δ →p 0. This is equivalent to
√
nτ̂ δ/2 →p 0. Therefore, the bias is

asymptotically negligible: Bn = op(1).

2. Asymptotic Normality. The preceding steps establish the linear representation of the

estimator:
√
n(θ̂ − θ0) = 1√

n

∑n
i=1 Ti(τ̂)φi + op(1).

Let Sn = 1√
n

∑n
i=1 Ti(τ̂)φi and let Xni = n−1/2Ti(τ̂)φi. We verify the conditions for the

Lyapunov Central Limit Theorem for the triangular array {Xni}.

(a) Zero Mean (Asymptotically): The mean of each term in the sum is E[Xni] = n−1/2E[Ti(τ̂)φi].

As shown above,
√
nE[Ti(τ̂)φi] = −Bn = op(1), so E[Xni] = op(n

−1).

(b) Convergent Variance: The sum of the variances is:
∑n

i=1 Var(Xni) =
∑n

i=1
1
n
Var(Ti(τ̂)φi) =

Var(T1(τ̂)φ1) = E[T1(τ̂)2φ2
1]−(E[T1(τ̂)φ1])

2. As n→ ∞, τ̂
p−→ 0, which implies T1(τ̂)

p−→

1. By the Dominated Convergence Theorem (since T 2
1φ

2
1 ≤ φ2

1 and E[φ2
1] < ∞), the

first term converges to E[φ2
1] = V . The squared mean term converges to (E[φ1])

2 = 0.

Thus,
∑n

i=1 Var(Xni) → V .

(c) Lyapunov Condition: We must show that for some ϵ > 0, the sum of higher moments

vanishes. Let ϵ be such that E[|φi|2+ϵ] < ∞ (a finite fourth moment as in Corollary

7.2 is sufficient, implying ϵ = 2).
∑n

i=1E[|Xni|2+ϵ] =
∑n

i=1
1

n(2+ϵ)/2E[|Ti(τ̂)φi|2+ϵ]

= n · 1
n1+ϵ/2E[|Ti(τ̂)φi|2+ϵ] = n−ϵ/2E[Ti(τ̂)2+ϵ|φi|2+ϵ] ≤ n−ϵ/2E[|φi|2+ϵ]. Since E[|φi|2+ϵ]

is a finite constant, the expression is O(n−ϵ/2), which converges to 0 as n→ ∞.

With all conditions satisfied, the Lyapunov CLT implies that Sn
d−→ N(0, V ). We now

apply Slutsky’s Theorem, which states that if Xn
d−→ X and Yn

p−→ c, then Xn + Yn
d−→ X + c.
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In our case, Xn = Sn and Yn =
√
n(θ̂−θ0)−Sn = Rn−Bn = op(1). Thus, Yn

p−→ 0. Slutsky’s

Theorem gives:
√
n(θ̂ − θ0) = Sn + op(1)

d−→ N(0, V ) + 0 = N(0, V ).

3. Consistency of the Variance Estimator. Let φ̄T = (
∑

i Ti(τ̂))−1
∑

i Ti(τ̂)φ̂i. By Lemma A.3

and Assumption 6.1, φ̄T = op(1) and 1
n

∑
i Ti(τ̂)

{
φ̂i − φ̄T

}2 p−→ E
[
φ(Z)2

]
. Because(

1
n

∑
i Ti(τ̂)

)−2 →p 1, the centered plug-in estimator stated in Theorem 6.2 is consistent

for V . In the non-vanishing case τ̂ →p τ̄ > 0, the same argument yields consistency for

Vtrim(τ̄) (see the remark following Theorem 6.2).

Thus, we only need to show the consistency of the numerator: 1
n

∑
i T̂iψi(θ̂, η̂)2

p−→ V . We

decompose the error using the triangle inequality:
∣∣∣ 1n∑i T̂iψ̂

2
i − V

∣∣∣ ≤
∣∣∣∣∣∣ 1n
∑
i

T̂iψ̂
2
i −

1

n

∑
i

Tiφ
2
i

∣∣∣∣∣∣︸ ︷︷ ︸
Term A

+

∣∣∣∣∣∣ 1n
∑
i

Tiφ
2
i − V

∣∣∣∣∣∣︸ ︷︷ ︸
Term B

.

• Term B converges to 0: By the Law of Large Numbers, since Ti(τ̂)φ2
i are i.i.d. and

τ̂
p−→ 0: 1

n

∑
i Ti(τ̂)φ2

i

p−→ E[Ti(0)φ2
i ] = E[φ2

i ] = V.

• Term A converges to 0: We can write |T̂iψ̂2
i − Tiφ

2
i | ≤ |(T̂i − Ti)ψ̂

2
i | + |Ti(ψ̂2

i − φ2
i )|.

The first part vanishes because P (T̂i ̸= Ti) → 0. For the second part, note that

ψ̂2
i − φ2

i = (ψ̂i − φi)(ψ̂i + φi). Since θ̂
p−→ θ0 and ∥η̂ − η0∥

p−→ 0, we have ψ̂i − φi
p−→ 0.

By the Continuous Mapping Theorem and dominated convergence (as ψ̂2
i is bounded

in probability), we have 1
n

∑
i Ti(τ̂)(ψ̂2

i − φ2
i )

p−→ 0.

Since both Term A and Term B converge to zero in probability, their sum does as well.

This establishes that the numerator converges to V , and therefore V̂
p−→ V .

A.8 Proof of Lemma 6.1

Let Aτ = {Ti(τ) = 1} and let H(Z) denote the target signal (e.g., τk(W ) for discrete or

∂dm(D,W ) for continuous). By definition, θ(τ) = E[H|Aτ ] = E[H1Aτ ]/P (Aτ ). The bias is:

θ(τ) − θ =
E[H1Aτ ]−E[H]P (Aτ )

P (Aτ )
=

E[H(1Aτ−1)]+E[H](1−P (Aτ ))

P (Aτ )
. Noting that 1Aτ − 1 = −1Ac

τ
, and

1 − P (Aτ ) = P (Acτ ) = E[1Ac
τ
], we rearrange terms: θ(τ) − θ = −E[(H−E[H])1Ac

τ
]

P (Aτ )
.
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Case (i): Boundedness. If |H| ≤ C almost surely, then |H − E[H]| ≤ 2C. Thus:

|θ(τ) − θ| ≤ 2CE[1Ac
τ
]

P (Aτ )
= 2CP (Ac

τ )
1−P (Ac

τ )
. By Assumption 2.3, P (Acτ ) = O(τ δ). Since τ → 0, the

denominator goes to 1, yielding O(τ δ).

Case (ii): Moment Bounds. If E[|H|q] ≤ C, applying Hölder’s inequality with exponents

q and p (where 1/q + 1/p = 1) to the numerator E[|H − E[H]| · 1Ac
τ
] yields: |E[. . . ]| ≤

∥H −E[H]∥q∥1Ac
τ
∥p = C ′ · P (Acτ )

1/p = C ′ · P (Acτ )
1−1/q. Substituting the overlap rate O(τ δ),

the bias is O(τ δ(1−1/q)).

A.9 Proof of Corollary 6.3

The validity of the joint Central Limit Theorem for Kn arms relies on the Lyapunov con-

dition. We must control the third absolute moment of the influence function relative to its

variance. In a multi-arm setting where Kn → ∞, the propensity scores pk(W ) mechanically

decay, which affects the moments of the inverse-propensity weights.

Recall the discrete influence function component for arm k: φik = Dik

pk(Wi)
(Yi−mk(Wi)) +

(mk(Wi) −m0(Wi)) − θk. Under the assumption of symmetric overlap where pk(W ) ≍ K−1
n ,

the variance and third moments scale as follows:

Variance: σ2
n ≍

Kn∑
k=1

E

[(
Dik

pk

)2
]
≍

Kn∑
k=1

Kn = K2
n. (19)

Third Moment: ρ3n ≍
Kn∑
k=1

E

[∣∣∣∣Dik

pk

∣∣∣∣3
]
≍

Kn∑
k=1

K2
n = K3

n. (20)

Unlike fixed-K settings, the fourth moments are not uniformly bounded; they scale with the

inverse propensity p−3
k ≍ K3

n.

The Lyapunov condition requires:
∑n

i=1 ρ
3
ni

(
∑n

i=1 σ
2
ni)

3/2 → 0. Substituting the scaling derived

above: n·K3
n

(n·K2
n)

3/2 = nK3
n

n3/2K3
n

= 1√
n
. While this ratio vanishes, strict consistency requires con-

trolling the variance inflation of the trimmed estimator and ensuring uniform integrability

of the higher moments. The binding constraint arises from the remainder terms in the von

Mises expansion, which scale with the number of arms. To ensure the inverse-propensity

weighted moments do not explode faster than the variance stabilizes, we require the fourth

moment condition derived in Assumption 2.7: K4
n

n
→ 0 =⇒ Kn = o(n1/4). This growth rate

11



is sufficient to ensure that the tails of the score distribution, driven by pk(W ) → 0, do not

invalidate the Gaussian approximation.

A.10 Proof of Proposition 4.1

Step 1. Notation and the interacted regression. Write the saturated linear specification as

Yi = α0 + β⊤0Wi +
∑K

k=1Dik

(
αk + β⊤kWi

)
+ εi, E[εi | Di,Wi] = 0.

Let riℓ = Yi − m̂ℓ(Wi) = Yi − α̂ℓ − β̂⊤ℓWi be the OLS residuals from the fully–interacted

fit. Standard OLS normal equations give, for each ℓ = 0, . . . , K,

n∑
i=1

1{Di = ℓ} riℓ = 0,
n∑
i=1

1{Di = ℓ} riℓWi = 0. (A.1)

Step 2. Plug–in efficient score. With the OLS nuisance estimates and any probabil-

ity–limit–stable p̂ℓ(W ), the sample efficient score for arm k is ψ̂ik = m̂k(Wi) − m̂0(Wi) +

Dik

p̂k(Wi)
rik − Di0

p̂0(Wi)
ri0 − θk. Set Snk = n−1

∑n
i=1 ψ̂ik.

Step 3. Sample moment equals the interacted-OLS moment. Break Snk into three pieces:

Snk = n−1
∑
i

[
m̂k(Wi) − m̂0(Wi)

]
︸ ︷︷ ︸

(i)

+ n−1
∑
i

[
Dik

p̂k(Wi)
rik − Di0

p̂0(Wi)
ri0

]
︸ ︷︷ ︸

(ii)

− θk.

Piece (ii). Fix ℓ ∈ {0, k}, multiply and divide by the true (unknown) pℓ(Wi), and

condition on Wi: E

[
Diℓ

p̂ℓ(Wi)
riℓ

∣∣∣∣Wi

]
= pℓ(Wi)

p̂ℓ(Wi)
E

[
1{Di = ℓ} riℓ

∣∣∣Wi

]
= 0, because the inner

expectation is exactly the population analogue of ( A.1 ). Hence the law of large numbers

gives n−1
∑

iDiℓp̂
−1
ℓ riℓ = op(1) for ℓ = 0, k, so piece (ii) is op(1).

Piece (i). By the definition of the IA estimator, θ̂IAk = n−1
∑

i

[
m̂k(Wi) − m̂0(Wi)

]
.

Therefore Snk = θ̂IAk − θk + op(1). Imposing the sample moment condition Snk = 0 yields

θ̂IAk = θk + op(1), exactly the solution to the OLS normal equations. Thus the plug–in DML

estimator with the saturated linear outcome model returns the interacted-ATE estimator

(Goldsmith-Pinkham et al., 2024). Since (6) is Neyman-orthogonal, θ̂k inherits all DML

asymptotics.
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A.11 Proof of Proposition 4.2

Step 1. CW-weighted propensities. Let πℓ = P (D = ℓ) and write g(W ) =
[∑K

ℓ=0 πℓ(1 −

πℓ)/pℓ(W )
]−1

. Define the CW-weighted indicators D̃iℓ = g(Wi)Diℓ/pℓ(Wi). By construction

they satisfy E[D̃iℓ | W ] = g(W ) and hence E[D̃iℓ] = 1.

Step 2. GPHK-CW estimating equation. (Goldsmith-Pinkham et al., 2024) estimate

θk as the coefficient from the weighted regression of Y on Dik using weights g(Wi). The

corresponding sample normal equation is

0 =
n∑
i=1

g(Wi)(Dik − πk)
(
Yi − θ̂CW

k

)
. (A.3)

Step 3. Plug–in score equals the CW moment. Insert the CW propensities p̂ℓ(W ) =

Diℓ/D̃iℓ into the efficient score: ψ̂CW
ik =

[
m̂k(Wi)− m̂0(Wi)

]
+ D̃ik{Yi− m̂k(Wi)}− D̃i0{Yi−

m̂0(Wi)} − θk.

Average and rearrange, 0
!

=
∑

i ψ̂
CW
ik

=
∑

i D̃ikYi −
∑

i D̃i0Yi − nθk. Use ( A.2 ) with ℓ = 0, k to replace
∑

i D̃i0 =
∑

i D̃ik = n,

giving
∑

i g(Wi)(Dik−πk)Yi = nθk. Subtracting θk
∑

i g(Wi)(Dik−πk) = 0 from both sides we

obtain the GPHK-CW normal equation (A.3). Hence the plug-in solution θ̂CW
k is identical to

the common-weight estimator, and the score expectation is zero at the truth. Orthogonality

follows because (6) is orthogonal for any propensities.

A.12 Rate Conditions for Common Learners

Random forests with honesty, boosted trees of depth O(log n), gradient-boosted splines, and

ReLU networks of depth ≤ C log n achieve the n−1/4 L2 rate under standard sparsity or

smoothness conditions; see Athey and Wager (2018), Farrell et al. (2021).

A.13 Proof of Lemma 6.2

Proof. The proof proceeds in two steps. First, we establish the uniform consistency of the

MSE estimator. Second, we show that this implies the consistency of the minimizer τ̂ .
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Step 1. Uniform Consistency of M̂SE. Recall that M̂SE(τ) = V̂ (τ) + B̂(τ)2. We show

uniform convergence for each component over the finite grid Gn.

1. Variance Component: The function class FV = {T (τ)φ(Z)2 : τ ∈ Gn} is finite. Since

E[φ(Z)2] < ∞ and T (τ) ≤ 1, the class has an integrable envelope. By the finite-class

LLN (Van der Vaart and Wellner, 1996),

sup
τ∈Gn

|V̂ (τ) − V (τ)| = op(1).

2. Bias Component: Similarly, for FB = {T (τ)φ(Z) : τ ∈ Gn}, we have

sup
τ∈Gn

|B̂(τ) −B(τ)| = op(1).

Combining these, and noting that supτ |B(τ)| <∞:

sup
τ∈Gn

|M̂SE(τ) −MSE(τ)| ≤ op(1) + 2op(1)Op(1) = op(1). (A.1)

Step 2. Consistency of the Minimizer. Let τ ⋆ = arg minτ∈Gn MSE(τ). Since the grid is

finite, define the separation gap ∆ = minτ ̸=τ⋆{MSE(τ) −MSE(τ ⋆)} > 0. If τ̂ ̸= τ ⋆, then

M̂SE(τ̂) ≤ M̂SE(τ ⋆). This implies:

∆ ≤MSE(τ̂) −MSE(τ ⋆) ≤ 2 sup
τ∈Gn

|M̂SE(τ) −MSE(τ)|.

Thus, P (τ̂ ̸= τ ⋆) ≤ P (2 sup | . . . | ≥ ∆) → 0 by (A.1).

A.14 Proof of Theorem 6.4

Let clusters be indexed by g = 1, . . . , G, with (random) cluster size ng and observations

Zgi = (Ygi, Dgi,Wgi), i = 1, . . . , ng. Write N =
∑G

g=1 ng and denote by η̂(−j) the nui-

sance estimates trained on clusters not in fold j (cluster-level cross-fitting). For a deter-

ministic threshold τ > 0 define Tgi(τ) = 1{mink pk(Wgi) ≥ τ} (or 1{f(Dgi | Wgi) ≥

τ} in the continuous case). Let the raw moment be ψ(Z; η) (no −θ) and φ(Z) = ψ(Z; η0)−θ
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the population influence function at the truth η0, as in (6)–(5). Define cluster totals

Sg(τ) =
∑ng

i=1Tgi(τ)
{
ψ(Zgi; η0) − θ(τ)

}
, Cg(τ) =

∑ng

i=1Tgi(τ), and their expectations

µC(τ) = E[Cg(τ)] and σ2
S(τ) = E[Sg(τ)2].1

Step 1. The estimator computed by Algorithm 1 can be written as the ratio of cluster

sums of trimmed raw moments (recall we average the raw moment to form θ̂): θ̂(τ) =∑G
g=1

∑ng
i=1 Tgi(τ) ψ̂gi∑G

g=1

∑ng
i=1 Tgi(τ)

, ψ̂gi = ψ
(
Zgi; η̂

(−j(g))).Addandsubtractθ(τ) in the numerator, and use the

identity ψ̂gi − θ(τ) = {ψ(Zgi; η0) − θ(τ)} + {ψ̂gi − ψ(Zgi; η0)} to obtain

θ̂(τ) − θ(τ) =

∑G
g=1 Sg(τ)∑G
g=1Cg(τ)

+

∑G
g=1

∑ng

i=1 Tgi(τ) {ψ̂gi − ψ(Zgi; η0)}∑G
g=1Cg(τ)

=:

∑G
g=1 Sg(τ)∑G
g=1Cg(τ)

+ RG(τ). (21)

Under Assumptions 2.6 and 6.1 (orthogonality, N−1/4 L2 rates on the trimmed support,

cluster-level cross-fitting, and E[ng] ∈ (0,∞)), the nuisance remainder satisfies
√
GRG(τ) =

1√
G

∑G
g=1

∑ng

i=1 Tgi(τ)
{
ψ̂gi−ψ(Zgi; η0)

}/(
1
G

∑G
g=1Cg(τ)

)
= op(1). The proof mirrors Lemma A.4:

expand the difference by a first-order Gateaux derivative, note that the expectations of the

linear terms vanish by Neyman orthogonality (Lemmas 3.1–3.2), and bound the quadratic

terms by
√
G× op(N

−1/2) = op(1) because N/G→p E[ng] ∈ (0,∞).

Step 2. By a cluster LLN and µC(τ) = E[Cg(τ)] > 0, 1
G

∑G
g=1Cg(τ)

p−→ µC(τ),
√
G
{

1
G

∑G
g=1Cg(τ)−

µC(τ)
}

= Op(1). Substituting this into (21) and multiplying by
√
G yields

√
G
{
θ̂(τ) − θ(τ)

}
=

1

µC(τ)
· 1√

G

G∑
g=1

Sg(τ) + op(1), (22)

because E[Sg(τ)] = 0 makes the usual ratio correction term vanish.

Step 3. Clusters are independent by Assumption 6.1. Moreover, E[Sg(τ)] = 0 and, by

Lemma A.2 combined with E[n2+κ
g ] < ∞, we have E[|Sg(τ)|2+κ] ≤ C < ∞ for some κ >

0. Hence the Lindeberg–Feller CLT for independent, not-necessarily identically distributed

arrays applies: 1√
G

∑G
g=1 Sg(τ)

d−→ N
(
0, σ2

S(τ)
)
, σ2

S(τ) = E
[
Sg(τ)2

]
. Combining with (22)

gives
√
G
{
θ̂(τ) − θ(τ)

} d−→ N
(

0, Vcl(τ)
)
, Vcl(τ) =

σ2
S(τ)

µC(τ)2
.

1By definition of θ(τ) = E[ψ(Z; η0) | T (τ) = 1], we have E[Sg(τ)] = 0.
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Step 4. Let Gn be the finite trimming grid in Assumption 6.1, and let τ̂ minimize the

uniform MSE proxy in Section 6.3. The cluster versions of Lemmas A.3–A.4 (finite-class

LLN for {Sg(τ), Cg(τ) : τ ∈ Gn} and the same orthogonality argument) imply τ̂
p−→

τ ⋆ ∈ G∞, and supτ∈Gn

∣∣∣√G{θ̂(τ) − θ(τ)
}
− 1

µC(τ)
· 1√

G

∑G
g=1 Sg(τ)

∣∣∣ = op(1). Therefore,
√
G
{
θ̂(τ̂) − θ(τ ⋆)

} d−→ N
(

0, Vcl(τ
⋆)
)
. If the grid vanishes (Condition 6.1) so that τ ⋆ → 0

and the trimming bias is op(G
−1/2), then θ(τ ⋆) → θ and the limit variance equals Vcl(0).

Step 5. Define the cluster sums of estimated centered contributions Ŝg =
∑ng

i=1 Tgi(τ̂)
{
ψ̂gi−

θ̂
}
, µ̂C = 1

G

∑G
g=1Cg(τ̂). The proposed estimator V̂cl = G(∑

g Cg(τ̂)
)2 ∑G

g=1 Ŝ
2
g = 1

µ̂ 2
C
· 1
G

∑G
g=1 Ŝ

2
g

converges in probability to Vcl(τ
⋆) because (i) µ̂C →p µC(τ ⋆) by a cluster LLN, (ii) 1

G

∑
g Ŝ

2
g →p

E[Sg(τ
⋆)2] (the difference Ŝg−Sg(τ ⋆) is op(1) uniformly over g by the same orthogonality and

rate arguments), and (iii) Gn is finite. A small-sample degrees-of-freedom factor G/(G− 1)

may be multiplied if desired.

Putting Steps 1–5 together proves the stated clustered CLT and the consistency of the

cluster-robust variance estimator under both deterministic and data-driven trimming. The

argument holds verbatim for the continuous-dose score (5) and the discrete multi-arm score

(6).

B Additional Simulation Results

This appendix provides the full set of Monte-Carlo results, expanding on the headline sum-

mary in the main text. Table B.5 reports the performance under linear potential outcomes

(Design A, Linear), and Table B.6 reports the performance under non-linear potential out-

comes (Design A, Non-Linear).
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Table B.5: Finite–sample linear performance (Design A)

(a) Strong overlap (γ = 0.6) (b) Weak overlap (γ = 1.8)

Estimator Estimator

n Metric GOATE-DML EW IA CW OLS n Metric GOATE-DML EW IA CW OLS

Panel A: Arm 1 (τ1 = 1.0)

1,000

Bias 0.034 0.007 0.004 0.010 0.010

1,000

Bias 0.270 0.004 0.004 0.003 0.003

RMSE 0.092 0.079 0.076 0.079 0.079 RMSE 0.311 0.185 0.136 0.098 0.098

s.e. 0.012 0.011 0.011 0.011 0.011 s.e. 0.022 0.026 0.019 0.014 0.014

2,000

Bias 0.018 −0.001 0.001 0.003 0.003

2,000

Bias 0.190 0.016 0.019 0.020 0.020

RMSE 0.075 0.063 0.063 0.060 0.060 RMSE 0.216 0.095 0.090 0.071 0.071

s.e. 0.010 0.009 0.009 0.008 0.008 s.e. 0.014 0.013 0.012 0.010 0.010

4,000

Bias 0.001 −0.001 −0.003 −0.003 −0.003

4,000

Bias 0.087 −0.014 −0.010 −0.011 −0.011

RMSE 0.044 0.040 0.038 0.037 0.037 RMSE 0.115 0.071 0.061 0.046 0.046

s.e. 0.006 0.006 0.005 0.005 0.005 s.e. 0.011 0.010 0.009 0.006 0.006

Panel B: Arm 2 (τ2 = 2.0)

1,000

Bias −0.005 0.007 0.004 0.000 0.000

1,000

Bias −0.099 −0.036 −0.010 −0.007 −0.007

RMSE 0.113 0.096 0.093 0.090 0.090 RMSE 0.181 0.138 0.111 0.093 0.093

s.e. 0.016 0.014 0.013 0.013 0.013 s.e. 0.021 0.019 0.016 0.013 0.013

2,000

Bias 0.009 0.012 0.013 0.014 0.014

2,000

Bias −0.042 0.013 0.025 0.017 0.017

RMSE 0.084 0.080 0.074 0.070 0.070 RMSE 0.118 0.089 0.090 0.071 0.071

s.e. 0.012 0.011 0.010 0.010 0.010 s.e. 0.016 0.013 0.012 0.010 0.010

4,000

Bias −0.007 −0.007 −0.009 −0.006 −0.006

4,000

Bias −0.054 −0.013 −0.006 −0.004 −0.004

RMSE 0.048 0.040 0.038 0.037 0.037 RMSE 0.102 0.081 0.062 0.052 0.052

s.e. 0.007 0.006 0.005 0.005 0.005 s.e. 0.012 0.011 0.009 0.007 0.007

Panel C: Arm 3 (τ3 = 3.0)

1,000

Bias 0.035 0.010 0.010 0.011 0.011

1,000

Bias 0.128 0.004 0.021 0.026 0.026

RMSE 0.110 0.100 0.093 0.089 0.089 RMSE 0.203 0.166 0.119 0.104 0.104

s.e. 0.015 0.014 0.013 0.012 0.012 s.e. 0.022 0.024 0.016 0.014 0.014

2,000

Bias 0.017 0.003 0.003 0.006 0.006

2,000

Bias 0.059 −0.012 −0.006 −0.003 −0.003

RMSE 0.089 0.067 0.064 0.062 0.062 RMSE 0.117 0.087 0.094 0.064 0.064

s.e. 0.012 0.009 0.009 0.009 0.009 s.e. 0.014 0.012 0.013 0.009 0.009

4,000

Bias 0.000 −0.005 −0.006 −0.005 −0.005

4,000

Bias 0.021 −0.025 −0.028 −0.020 −0.020

RMSE 0.053 0.043 0.043 0.041 0.041 RMSE 0.079 0.074 0.066 0.050 0.050

s.e. 0.008 0.006 0.006 0.006 0.006 s.e. 0.011 0.010 0.008 0.006 0.006

Notes: Detailed performance for Linear Data Generating Process. Bias is mean deviation from true ATE.
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Table B.6: Finite–sample non-linear performance (Design A)

(a) Strong overlap (γ = 0.6) (b) Weak overlap (γ = 1.8)

Estimator Estimator

n Metric GOATE-DML EW IA CW OLS n Metric GOATE-DML EW IA CW OLS

Panel A: Arm 1 (τ1 = 1.0)

1,000

Bias 0.005 0.005 −0.006 0.005 0.005

1,000

Bias 0.071 0.028 −0.001 −0.011 −0.011

RMSE 0.097 0.113 0.098 0.097 0.097 RMSE 0.155 0.151 0.128 0.117 0.117

s.e. 0.014 0.016 0.014 0.014 0.014 s.e. 0.019 0.021 0.018 0.016 0.016

2,000

Bias 0.012 −0.002 −0.012 −0.001 −0.001

2,000

Bias 0.027 −0.011 −0.031 −0.043 −0.043

RMSE 0.078 0.083 0.080 0.084 0.084 RMSE 0.100 0.094 0.090 0.084 0.084

s.e. 0.011 0.012 0.011 0.012 0.012 s.e. 0.014 0.013 0.012 0.010 0.010

4,000

Bias −0.002 0.003 −0.009 0.000 0.000

4,000

Bias 0.002 −0.015 −0.036 −0.044 −0.044

RMSE 0.061 0.061 0.060 0.056 0.056 RMSE 0.061 0.053 0.060 0.069 0.069

s.e. 0.009 0.009 0.008 0.008 0.008 s.e. 0.009 0.007 0.007 0.007 0.007

Panel B: Arm 2 (τ2 = 2.0)

1,000

Bias 0.025 0.128 0.130 0.080 0.080

1,000

Bias 0.025 0.336 0.330 0.130 0.130

RMSE 0.113 0.178 0.170 0.137 0.137 RMSE 0.139 0.367 0.356 0.184 0.184

s.e. 0.016 0.017 0.015 0.016 0.016 s.e. 0.019 0.021 0.019 0.018 0.018

2,000

Bias 0.031 0.132 0.130 0.074 0.074

2,000

Bias 0.041 0.336 0.332 0.130 0.130

RMSE 0.086 0.154 0.151 0.107 0.107 RMSE 0.112 0.352 0.347 0.159 0.159

s.e. 0.011 0.011 0.011 0.011 0.011 s.e. 0.015 0.015 0.014 0.013 0.013

4,000

Bias 0.001 0.110 0.110 0.053 0.053

4,000

Bias 0.007 0.319 0.314 0.119 0.119

RMSE 0.041 0.125 0.123 0.078 0.078 RMSE 0.076 0.325 0.321 0.133 0.133

s.e. 0.006 0.008 0.008 0.008 0.008 s.e. 0.011 0.009 0.009 0.008 0.008

Panel C: Arm 3 (τ3 = 3.0)

1,000

Bias 0.048 0.040 0.028 −0.019 −0.019

1,000

Bias 0.011 0.078 0.058 −0.139 −0.139

RMSE 0.133 0.128 0.101 0.100 0.100 RMSE 0.156 0.173 0.144 0.196 0.196

s.e. 0.018 0.017 0.014 0.014 0.014 s.e. 0.022 0.022 0.019 0.020 0.020

2,000

Bias 0.024 0.020 0.022 −0.035 −0.035

2,000

Bias 0.046 0.041 0.035 −0.160 −0.160

RMSE 0.080 0.082 0.086 0.094 0.094 RMSE 0.123 0.100 0.095 0.178 0.178

s.e. 0.011 0.011 0.012 0.012 0.012 s.e. 0.016 0.013 0.012 0.011 0.011

4,000

Bias 0.005 0.009 0.010 −0.047 −0.047

4,000

Bias 0.055 0.048 0.042 −0.155 −0.155

RMSE 0.066 0.076 0.073 0.084 0.084 RMSE 0.090 0.083 0.075 0.165 0.165

s.e. 0.009 0.011 0.010 0.010 0.010 s.e. 0.010 0.010 0.009 0.008 0.008

Notes: Detailed performance for Non-Linear Data Generating Process. Bias is mean deviation from true ATE.
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Figure B.3: Estimator Robustness to Non-Linearity. The horizontal axis represents the
scaling factor of the non-linear confounding term. As complexity increases, OLS bias grows
linearly and polynomial corrections exhibit increasing bias. The GOATE-DML estimator
remains unbiased regardless of complexity due to the adaptive nature of the nuisance learners.

C Additional Empirical Applications

C.1 Drexler et al. (2014): The Honest Cost of Robustness

We analyze the experiment of Drexler et al. (2014) regarding financial literacy training.

This application represents a ”stress test” for weak overlap. As shown in Figure C.4, the

finite-sample distribution of assignment probabilities for the ”Rule-of-Thumb” arm exhibits

a massive concentration near zero. Consequently, our adaptive procedure trims 6.1% of

the sample. Both OLS and the linear GPHK correction estimate a null effect. GOATE-

DML addresses this by estimating the effect non-parametrically only on the valid overlap

sub-population. We find a point estimate of −575 pesos, which remains statistically in-

distinguishable from zero (p = 0.55). Crucially, the GOATE-DML standard error (958)

is approximately 20% larger than OLS (801). This reflects the honest cost of robustness:
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by trimming non-overlapping units, the estimator removes the ”false precision” that OLS

achieves by extrapolating linearly into regions of poor support.
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Figure C.4: Empirical Overlap in Drexler et al. (2014). The histogram displays the distri-
bution of estimated propensity scores. The accumulation of mass near zero necessitates the
GOATE trimming strategy.

20


	Introduction
	Setup and Assumptions
	Orthogonal Influence Functions
	Continuous Treatment
	Discrete Multi-Arm Treatment

	Mappings to ATE(IA), CW, and EW
	Interacted–ATE (IA): explicit mapping in sample
	Common–Weight (CW): explicit mapping in sample
	Easiest‑to‑Estimate (EW): pairwise AIPW and the cost of discarding data

	GOATE–DML Estimator & Algorithm
	Asymptotic Theory & Inference
	Root-n CLT for the Orthogonal Score under Deterministic Trimming
	Asymptotic Guarantees
	Uniform MSE rule for the threshold
	Root-n inference with data-driven trimming
	Clustered Sampling: Cross‑Fit‑by‑Cluster and Cluster‑Robust Inference

	Monte-Carlo Simulations
	Data Generation Processes
	Design A: Three Discrete Arms
	Design B: Continuous Dosage with Non-Linear Confounding
	Estimation Details

	Monte-Carlo evidence for discrete treatments (Design A)
	Results: Continuous Dosage (Design B)

	Empirical Applications
	Project STAR: Efficiency and Non-Linear Bias
	de Mel et al. (2013): The Saturated Benchmark
	Weisburst (2019): Unmasking Non-Linear Bias in Continuous Doses

	Conclusion
	Proofs of Main and Auxiliary Results
	Proof of Proposition 2.1
	Proof of Lemma 3.1
	Auxiliary identity for the multi-arm score
	Proof of Lemma 3.2
	Proof of Theorem 6.1
	Regularity Lemmas for Trimmed Cross–Fitting
	Proof of Theorem 6.2 
	Proof of Lemma 6.1
	Proof of Corollary 6.3
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Rate Conditions for Common Learners
	Proof of Lemma 6.2
	Proof of Theorem 6.4

	Additional Simulation Results
	Additional Empirical Applications
	Drexler et al. (2014): The Honest Cost of Robustness


