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1 Introduction

Causal studies increasingly involve either several mutually exclusive policy arms—for in-
stance, school-reopening tiers or tax brackets—or a continuous score that functions as a
dosage. In these designs, the naive ordinary-least-squares (OLS) coefficient on a treatment
indicator is contaminated; it conflates the arm’s own causal effect with spill-overs that arise
mechanically from correlations among the remaining arms. The point was foreshadowed
in multi-valued treatment work by Robins, Rotnitzky, and Zhao (1994) (reviewed in Lopez
and Gutman, 2017), formalized for linear regressions by Goldsmith-Pinkham et al. (2024)
(GPHK) and Sloczyniski (2022), and can bias even randomized experiments whenever com-
pliance is imperfect. GPHK offers three coefficient-level “plug-in” corrections—interacted
ATE (IA), common-weight (CW), and easiest-to-estimate (EW)—Dbut their validity rests on
linear conditional means and near-perfect overlap.

A broader literature tackles related but distinct challenges. For discrete arms, semipara-
metric influence-function work derives efficiency bounds and double-robust scores (Newey,
1990; Graham, 2011; Kennedy, 2016); for continuous doses, the generalized propensity-score
framework of Imbens (2000), Hirano and Imbens (2004), Imai and van Dyk (2004), and Imai
and Ratkovic (2014) exposes analogous support problems, while Kennedy (2024), Colan-
gelo and Lee (2020), and Chernozhukov et al. (2022) provide orthogonal scores that unlock
machine-learning first stages. Weak overlap has spurred trimming and overlap-weighting
rules (Crump et al., 2009; Li et al., 2018; Li and Li, 2019; Kallus and Oprescu, 2023), but
none of these strands addresses contamination across multiple arms or unifies discrete and
continuous regimes within one estimator.

This paper provides such a unification. We derive a single, Neyman-orthogonal influence
function that delivers contamination-free estimation for both multi-arm (D € {0,...,K})
and continuous-dose (D € R) treatments. The discrete special cases reproduce 1A, EW,
and CW-—thereby strictly generalizing GPHK—while retaining efficient influence-function
form. Embedding this score in a cross-fitted double-machine-learning (DML) routine (Cher-
nozhukov et al., 2018) yields root-n inference in the presence of high-dimensional, non-linear

nuisances.



Limited support remains a first-order concern. We therefore focus on the GOATE: the
average effect for the sub-population whose minimum propensity (or conditional density) lies
above a threshold 7. A data-driven mean-squared-error (MSE) rule (Bennett et al., 2023)
chooses 7 adaptively, and we prove valid cluster-robust inference even when the number of
arms grows with the sample (K,, = o(n'/*)). GOATE is policy-relevant because it describes
individuals who could plausibly receive any treatment arm, respecting external validity in
settings with limited overlap.

The paper makes four contributions. First, we formally map the contamination bias
decomposition of Goldsmith-Pinkham et al. (2024) to the language of semiparametric effi-
ciency. We demonstrate that the standard EIF is the non-parametric generalization of their
linear corrections. By characterizing the EIF in this specific multi-arm context, we show
that ”de-contamination” is analytically equivalent to satisfying the Neyman orthogonality
condition with respect to the propensity score. In doing so, we synthesize the discrete and
continuous regimes into a single Riesz representer framework, differing only in the reference
measure. Second, it supplies the first contamination-free framework for continuous treat-
ments and proves valid joint inference when the number of arms grows. We establish that
valid inference requires the stricter growth condition K,, = o(n'/*) to control the explosion
of inverse-propensity moments, revising standard high-dimensional CLT results that assume
bounded moments. Third, it formalizes GOATE together with a data-driven trimming rule
that balances bias and variance, and it establishes cluster-robust inference via a cross-fit-
by-cluster scheme. Fourth, the empirical illustrations show that the estimator can alter eco-
nomic conclusions: in Project STAR the estimated small-class effect falls by 0.73 test-score
points relative to OLS—three times the adjustment implied by GPHK—and in two further
micro-credit experiments the estimator uncovers heterogeneous effects that linear methods
obscure. These results connect to semiparametric efficiency bounds for multi-valued treat-
ments (Newey, 1990; Graham, 2011), to recent orthogonalization methods for continuous
doses (Kennedy, 2024), and to high-dimensional central-limit theory (Chernozhukov et al.,
2017). To the best of my knowledge, this is the first contamination-robust, root-n-consistent
estimator that spans both discrete and continuous treatment designs in high-dimensional,

non-linear settings.



Section 2 introduces notation and high-level assumptions. Section 3 derives the orthog-
onal influence functions. Section 4 maps our score into the linear corrections of Goldsmith-
Pinkham et al. (2024), whereas Section 5 details the cross-fitted estimator and adaptive
trimming rule. Asymptotic theory is given in Section 6, followed by simulations (Section 7)

and empirical applications (Section 8). Section 9 concludes.

2 Setup and Assumptions

The goal of this section is two-fold. First, we spell out the stochastic environment—what
variables are observed and what causal quantities are of interest. Second, we collect the high-
level conditions under which the subsequent orthogonal-score construction and asymptotic
theory will operate. Throughout we let Z; = (Y;, D;, W;) denote the observable outcome (Y),
treatment (D), and covariates (W) for unit ¢ = 1,...,n, and assume the draws are i.i.d. for
notational simplicity. Two treatment regimes are covered.

We begin with the canonical setting of K + 1 mutually exclusive arms. Formally, D; €
{0,1,..., K}, where k = 0 is the control arm, and we write D;, = 1{D; = k} for the
associated dummies. The propensity score for arm k is px(W) = P(D; =k | W;), k=
0,..., K, sopp(W) € (0,1) for each k under our overlap conditions below. Throughout the

paper we rely on a standard selection on observables condition.

Assumption 2.1 (Unconfoundedness—Discrete). The wvector of potential outcomes
{Y;(0),Y;(1),...,Yi(K)} is independent of the realized treatment D; conditional on covariates
Wi: {Yi(0), Yi(1),..., Yi(K)} AL D; | W

After conditioning on W;—which may be high-dimensional-—assignment to each arm is
“as good as random,” ruling out unobserved confounders. This is the discrete analogue of the
continuous unconfoundedness assumption used below. Our primary target is the arm-specific

ATE relative to control,

Point identification of 6, follows directly from Assumption 2.1 and the law of iterated ex-
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pectations. Many empirical studies record a dosage or index rather than a finite set of
arms—think of tax rates, pollution levels, or test scores. We therefore let D; take values in
a compact interval D C R and denote by f(d | W) the conditional density of the dose. The
conditional mean function is m(d, W) = E[Y | D = d, W].

Assumption 2.2 (Unconfoundedness—Continuous). For every d € D the potential outcome

Yi(d) is independent of the realized dose D; conditional on covariates W;: Y;(d) 1L D; ’ W;.

In the continuous setting we focus on the average partial effect (APE), 0 = E[@dm(Di, m)] ,

i.e. the expected marginal effect of a small dose change evaluated at the observed D;.

Assumption 2.3 (Weak overlap (both designs)). Let 7, | 0 be a deterministic trimming
threshold. There exists § > 0 such that P(miny, p,(W) < 7,) = O(12)  (discrete) or P(f(D |
W) <1,) =0(7)) (continuous).

n

Assumption 2.4 (Smoothness). The regression function m(d, W) and the log-density log f(d |
W) are twice continuously differentiable in d and lie in a Holder class of order o > 2 with

respect to W.

These regularity conditions guarantee that the EIF we derive in section 3.1 exists and,

/4 convergence rate that

importantly, that local-polynomial estimators can attain the n~
orthogonal scores require. Estimation becomes unstable when p,(W) or f(D | W) approach
zero. Rather than assume a uniform lower bound, we allow the support violations to vanish

slowly with the sample size and control them via trimming.

Remark 2.1 (Trimming indicators and shorthand). We use the following trimming indica-

tors throughout:

TZ-diSC(T) _ 1{minpg(Wi) > 7-} , Ticom(T) = l{f(Di | Wz) > T} . (2)

1<K
When the design is clear from context we write T;(T) for either (2).

The tails of the propensity or density are allowed to get thinner as the sample grows, but

not so fast that we lose y/n information after trimming the worst-overlap observations. The



adaptive rule of section 6.3 chooses 7,, on a data-dependent grid. For the accuracy of machine-
learning first stages, all subsequent estimators rely on non-parametric fits m, p, f . The next
assumption imposes the minimal rate conditions under which Neyman orthogonality can

partial out first-stage error.

Assumption 2.5 (Anti-concentration near the trimming threshold). There exist ¢ > 0 and
k € (0,2] such that, uniformly over 7 € G,, and all h > 0 small enough, Pr(| min,<x p,(W) —
T <h) < ch® (discrete), Pr(|f(D|W)—71| <h) < ch® (continuous).

That is, the distribution of the trimming margin has a bounded local density uniformly

over the grid.

Remark 2.2. Assumption 2.5 is implied, for example, if the distribution of ming<g pe(W)
(respectively f(D | W)) admits a bounded Holder-continuous density in a neighborhood of
each T € G,. It is used only to control indicator disagreements Pr(T(t) # Ty(t)) when we

combine hard trimming with estimated propensities/densities.

Assumption 2.6 (First-stage ML rates). On the trimmed support, ||m—ml|a.r = 0,(n"Y4), ||px—

Prll2r = 0p(n7Y4), and, for continuous doses, ||Qgn — Ogm||ar, ||f — fllar = 0p(n1/4).

Honest causal forests, boosted trees, deep nets (Collier et al., 2021), and local-polynomial
estimators all satisfy these rates under either sparsity or smoothness—see Appendix A.12
for citations. We finally record two technical conditions that are invisible in classical low-
dimensional proofs but become essential once we allow (i) clusters of heterogeneous size, and

(ii) a growing number of arms K.

Remark 2.3 (Trimmed Ly norm). For any scalar function g(Z) and threshold T, we define

2 =
||g||§7T(T) = E[Q(IZD)(TI(;TZ(I)) 1}]. All rate statements in Assumption 2.6 are with respect to || -

l2.7(r)-

Assumption 2.7 (Uniform moments and overlap margin as K grows). Let ¢} denote the
efficient score in (6). There exists a trimming lower bound T, € (0,1) (the minimum of the
grid in section 6.3) such that for all large n:

(i) Uniform overlap tail: P(min,p,(W) < t) < Ct° for all t € (0,1) and some § > 0;

(it) Uniform outcome fourth moments: sup,. . E[[Y —m,(W)[*] < oo;
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(w4i) Joint control of fourth moments and K,: sup,<x, E|¢h(Z)" 1{min, p,(W) > In}] <

4 _—q
Kntn
n

Cy1,,? for some finite Cy and q € [2,4]; and the growth/trimming coupling
0.

—

This stricter condition (K, = o(n'/*) when 7, is fized) is necessary because the fourth
moments of the influence function scale with p,°> < K2 as the number of arms increases.
The last display ensures the Lyapunov ratio in the many-arm CLT vanishes even if the
fourth moments inflate as T,, | 0. When a non-vanishing grid is used (fived T > 0), it holds

automatically.

Remark 2.4 (How to pick the grid in practice). If you wish to let the trimming grid vanish
with n while K, grows, set its minimum according to T, =< (K3/n)"® for the q implied by
your learners (e.g. ¢ = 2 under standard tail behavior). This meets Assumption 2.7 and

keeps the many-arm CLT wvalid.

Remark 2.5 (Fixed-arm vs. growing-K,, scope). Unless explicitly stated otherwise (see
Corollary 6.3), all asymptotic statements in the paper are fixed-arm: the indez k is held fized
as n — 00. No restriction on how the total number of arms K = K,, may grow is needed for
these fized-arm results beyond the uniform moment condition sup, . El¢i(Z)*] < oo. The

growth condition K, = o(n'/*) is used only for the joint many-arm CLT.

Under Assumption 2.4 a trimmed Ly rate of o,(n~/4) is attainable for local-polynomial
density and regression estimators whenever the treatment dimension d < 4 Cattaneo et al.,

2024.
Remark 2.6. Detailed moment and cross-fit reqularity proofs are collected in Appendiz A.6.

While the global ATE, 7(d) = E[Y (d) — Y (0)], is the standard target in causal inference,
estimating it requires strong overlap—that is, the propensity score must be bounded away
from zero and one uniformly. Under the weak overlap sequence defined in Assumption
2.2, the standard ATE is not /n-estimable because the propensity scores pi, (W) may drift
toward zero. In complex multi-arm experiments, strong overlap assumption often fails (see,
e.g., the analysis of Drexler et al. (2014) in section 8). Therefore, we do not target the ATE
directly. Instead, we define the GOATE as the target parameter, explicitly conditioning on
the trimming set defined by the overlap weights.



Let V C supp(W) denote the region of valid overlap, determined by a trimming rule

based on the propensity score (for discrete D) or the conditional density (for continuous D).

Proposition 2.1. [Identification of GOATE] Under the relevant unconfoundedness assump-

tion (2.1 or 2.2), the trimmed parameter Ogoare is identified as the conditional expectation:
Ocoare(d) = E[Y(d) —Y(0) | W € V]. (3)

Equivalently, using the Riesz representation, this is the weighted average effect:

E[Ly(W) - (¥ (d) = Y(0))]

(
BTy (7) @)

Ocoare(d) =

By targeting (3) rather than the global ATE, we avoid the bias and variance explosion asso-

crated with extrapolating linear models into regions of poor support.
Proof. See Appendix A.1. m

Remark 2.7 (Policy relevance of GOATE). When propensity support is limited, trimming
observations with ming px(W) < 7 (or f(D|W) < 7) changes the target parameter from the
full-sample ATE to the Generalized Overlap ATE. GOATE is not a drawback but a feature:
it reports the causal effect on the sub-population that could plausibly have been assigned any

treatment arm, thus respecting external validity for feasible policy counterfactuals.

3 Orthogonal Influence Functions

Contamination arises because a saturated regression forces the coefficients on different treat-
ment arms (or bins) to compete for the same residual variation. The cure is an orthogonal
influence function that: (i) identifies the causal parameter in the usual semiparametric sense,
(ii) removes every linear dependence on the nuisance functions 7(-), and therefore (iii) re-
mains first-order valid even when 7 is estimated by a flexible learner. The two influence
functions below meet all three goals and reduce to classical AIPW scores when K = 1.

The following influence functions both identify the parameters and algebraically remove

the contamination bias of Goldsmith-Pinkham et al. (2024).
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3.1 Continuous Treatment

Let f(d | W) be the conditional density of the dose and write s(d, W) = dylog f(d | W) for
its score. Conditional outcome regressions are denoted m(d, W) = E[Y | D = d, W].

The EIF is
o (Z;0,m) = s(D,WNHY —m(D,W)}+0sm(D,W) =0, 5= (m,f). (5)

The first term multiplies the outcome residual by the density score— the analogue of
a “clever covariate” familiar from binary AIPW estimators—while the 0;m term shifts the
moment so that its expectation is exactly the average partial effect #. Any first-order error in

m or f cancels by construction, which is the essence of Neyman orthogonality proven below.

Remark 3.1 (Relation to Kennedy (2023)). Our continuous score generalizes the “auto-
matic orthogonalization” framework of Kennedy (2023). While Kennedy (2023) derives the
EIF for a scalar continuous treatment, our formulation extends this to the multi-arm set-
ting by explicitly incorporating the contamination terms arising from other treatment levels.
Specifically, the cross-arm orthogonality correction in Equation (5) is absent in the scalar

framework but is necessary here to isolate the marginal effect of dose d from the spill-overs

of doses d' # d.

Lemma 3.1 (Orthogonality—Continuous). Under Assumptions 2.2 and 2.4, and the bound-
ary condition in Assumption 3.1 below, the influence function ©'© (i) uniquely identifies 0

and (ii) is Neyman-orthogonal with respect to the nuisance bundle n = (m, f).

Proof Sketch. The proof proceeds in two parts. First, we show that the expectation of
the score is zero at the true parameter values, which establishes identification of 8 =
E[0;m(D,W)]. Second, we compute the pathwise derivative of the moment condition with
respect to perturbations in the nuisance functions m and f and show it is zero. This Neyman
orthogonality property is key to the \/n-consistency of the DML estimator, as it renders the
estimator insensitive to first-order errors in the estimation of the nuisance functions. The

full, detailed proof is provided in Appendix A.2. n



Assumption 3.1 (Strict Boundary Control). To ensure the validity of the integration by
parts in Lemma 3.1 when the density f(d|W') does not vanish at the boundaries of D (e.g.,
f(O|W) > 0), we require strictly unbiased estimation at the boundary. Standard Gaussian
kernel density estimators suffer from boundary bias O(h) rather than O(h?). Therefore,
estimation of the nuisance functions f(d|W) and m(d, W) must utilize boundary-corrected
kernels (e.g., local linear regression) as detailed in Cattaneo et al. (2024). This ensures the

product of the nuisance error and the density vanishes at 0D at the required n=* rate.

Remark 3.2 (Learners and rates). Under Assumption 3.1 and the smoothness conditions
used for density/local polynomial estimators, the trimmed Ly rates required for our orthogonal
score hold in low dimensions (e.g., d <4), and the integration-by-parts step is valid. State
explicitly whether Ogm is produced by the same local polynomial fit as m (preferred) or by a
separate fit.

Remark 3.3 (Vector-valued doses). Assumption 3.1 is imposed coordinate-wise when D €
R?, i.e. the boundary product h,,(d, W) f(d | W) must vanish at every face of the rectangular
support D C Re. All proofs that rely on integration by parts therefore extend verbatim to
d>1.

Remark 3.4 (Rates under boundary-robust estimation). Under Assumption 2.4 with o > 2
and treatment dimension d < 4, boundary-corrected local polynomials deliver trimmed Lo
rates o,(n~Y4) for (m,04m) and (f,04log f) on any grid value T > 0, which suffices for
Neyman-orthogonal DML. See Cattaneo et al. (2024) and references therein.

Remark 3.5 (Square-Integrability of the Score s(D,W)). The wvalidity of the asymptotic
theory requires the influence function to have a finite second moment, which in turn de-
pends on the score function s(D,W) = 0ylog f(D|W) being square-integrable. Assump-
tion 2.4 states that log f(d|W) is twice continuously differentiable, which implies that both
s(d, W) and its derivative 04s(d,W) are continuous functions. On the trimmed support,
where f(D|W) > 1, > 0, the denominator of s(D, W) = (04f)/f is bounded away from zero.
As continuous functions on a compact domain are bounded, both Oyf(d, W) and f(d|W) (on
the trimmed set) are bounded. Therefore, s(D, W) is bounded on the trimmed support. A
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bounded random wvariable on a probability space necessarily has finite moments of all orders,

ensuring that E[s(D,W)*- 1{f(D|W) > 7,}] < occ.

Plugging (9 (Z;; é,ﬁ) into a cross-fitted DML estimator therefore yields /n-consistent
and semiparametrically efficient inference for continuous treatments—even when m and f

are fitted by, say, boosted trees or deep nets.

3.2 Discrete Multi-Arm Treatment

For mutually exclusive arms D € {0,1,..., K} let my(W) = E[Y | D = ¢, W] and p,(W) =
P(D = (¢ | W). Contamination in a plain dummy regression stems from the fact that the
dummies sum to one; the EIF below corrects this algebraically by subtracting the control
term arm-by-arm.

The efficient, contamination-free influence function for arm k is

Pi(Z;0k,m) = [mi (W) —mo(W)]
Dy,
Pk(W)

Dio (6)
oy L~ meW} =6

+ {Y—mk(W)} -

with nuisance bundle n = (my, ..., mk, po, - - -, PK)-
The structure mirrors an AIPW score for a binary treatment, except that the outcome-

regression and IPW corrections are stacked in a “treatment-minus-control” fashion.

Lemma 3.2 (Identification & Neyman orthogonality). Let 7.(W) = E[Y;(k) — Yi(0) | W].
Then Elp;] = E[m(W)| — 0; hence Elg;] = 0 iff 0, = E[Y;(k) — Yi(0)]. Moreover,
Oy Elgi(Z;0k,m + 1h)]r—o = 0 for every mean-zero perturbation h = (hy,h,), and ¢} at-

tains the semiparametric efficiency bound.

Because ¢} is also doubly robust, an empiricist only needs one of the two first-stage
models—propensities or outcome regressions—to be well estimated. This is crucial when
flexible learners are applied in high-dimensional W. This structure generalizes the binary-

treatment efficiency results of Hahn (1998) to the multi-arm setting.

Proof Sketch. The proof establishes two key properties. First, identification, which shows
that the score has a unique root at the true ATE 6. Second, Neyman orthogonality, which
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demonstrates that the moment condition is locally insensitive to errors in the nuisance func-
tions 1. This latter property is essential for the validity of the DML estimator. The logic
relies on the law of iterated expectations and the specific structure of the score, which bal-
ances regression-adjustment and inverse-propensity weighting terms. A full, step-by-step

derivation is provided in Appendix A.4. O

Remark 3.6 (Double robustness). The moment condition in Lemma 3.2 continues to hold
if either all outcome regressions (my) or all propensity scores (py) are consistently estimated,

as shown in Appendiz A.J.

4 Mappings to ATE(IA), CW, and EW

This section makes the algebra explicit. Interacted—ATE (IA) and Common—Weight (CW)
are plug-in instances of our unified orthogonal score, while EW coincides with the pairwise

ATIPW score on the binary subsample {D € {0, k}}.

4.1 Interacted—ATE (IA): explicit mapping in sample

Let the saturated linear model be Y; = ag + 85 W; + Zle Dig (cg + BY W) + &, Ele; |
D;,W;] =0, and let m,(W) = &, + B}W be the OLS fits on the training folds (cross-fitted).

Define the arm-specific OLS residuals r;y = Y; — m,(W;) and note the normal equations

1€Z; 1€Z;
Our efficient score for arm & (cf. (6)) is ¢5(Zi; 0k, m) = [mu(Wi) — mo(Wy)] + %{Yi —
mi(W;)} — %{K —mo(W;)} — 0x. Evaluate it with nuisances (m,p) and drop the —6

term to form the raw moment 1, = [mk(vm) — mo(m)} + % Tile — % Ti0-

Add and subtract D;7; and D;gr;0 to re-express the IPW residual terms: D k’“ Tik =

D
Digrik+ (D

ik
Pk

—Dik>rik, Dio .o = Djorio+ <Di0 —Di0> ri0. Summing over ¢ € Z; and using (7),

Po Do

the unweighted residual sums > D1y and Y Djorio vanish ezactly on each estimation fold,

leaving 3 iez, Vik = iz, [Tn(W) = 1o (Wh)] + e (2% = Dt )ik = Sier, (22 = Dio ) .
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If (as is standard) p, are estimated consistently (e.g., multinomial logit, RF, GBM) on the
complementary folds, then the last two sums are o,(n) by cross-fit orthogonality. Hence
the trimmed sample moment equation ). T;(7 )wzk = 0 is equivalent, up to o,(n), to the
interacted-ATE estimating equation Y, T;(7) [riu.(W;) — mho(W)] = <Z Ti(7 )) 1A, Thus
the TA estimator is the plug-in DML solution for our score, with o,(n~%/2) differences in
6, under the ML rates. IA solves the same orthogonal moment as our estimator, modulo

cross-fit 0,(n"1/?) terms coming from weighting the residuals by p, .

Proposition 4.1 (IA as plug-in DML). Under Assumption 2.6 (first-stage Ly rates o,(n=/4)
on the trimmed support) and J-fold cross-fitting, the plug-in DML sample moment based on
(6) equals the IA estimating equation up to o,(n~Y/2). Consequently, the IA point estimate

and the plug-in DML estimate are asymplotically equivalent: 0> — GPME = o (n=1/2).,

4.2 Common—Weight (CW): explicit mapping in sample

Let g(W) be the CW weight g(W) = [Zfoﬁg(l - ’f(‘g)/ﬁg(W)}i , e = ntY, Dy
Define the CW “stabilized” indicators D,y = (W(IZV )“ The CW normal equation for 6, is the

weighted moment

D Ti(7) g(W) (Da = i) (Vi = %) = 0. (8)

Start from the raw DML moment zﬁzk above and multiply the two IPW residual terms
by g(W;) (which does not change the root of the moment condition because the my — mg
piece is unweighted). Then 3, Ty(7) thur = 3, Ti(7) ik (W3) — 1io(Wi)] + 32, T3 (7) D rire —
Yo T(T ) w0 Ti0- Use i = Y;—my(W;), expand, and regroup terms to isolate Y;: >, T;(7) wik =
ZZTZ(T)[ ik — Dio]Yi — >, Ti(7) [f),k — Dio] me(W;), where m, denotes the appropriate
arm-specific regression in each term. Because the CW propensity fits satisfy the calibration

identities . Ty(7) Dy = Y2, Ti(7) g(Wi) =2iee ~ 2. Ty(7) g(W;) (€ = 0,k), the terms

DPe(W3)

involving 1m, cancel up to o,(n), and the remaining Y-part reduces to (8) after subtracting
0, > Tig(W3) (D — 7)) = 0. Thus CW and the plug-in DML moment coincide up to o,(n)
under the CW propensity fit. With CW propensities, the unified score’s sample moment is
the CW weighted normal equation (plus o,(n) cross-fit remainders), so the estimators are

asymptotically equivalent under the stated rates.
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Proposition 4.2 (CW as plug-in DML). Under Assumption 2.6 and J-fold cross-fitting,
the plug-in DML sample moment based on (6) equals the CW estimating equation up to
op(n_l/Q) when CW propensities are used in the score. Hence the CW and plug-in DML

point estimates are asymptotically equivalent: égw — é,?ML = op(n_l/ 2).

4.3 Easiest-to-Estimate (EW): pairwise AIPW and the cost of dis-

carding data

Restrict to the binary subsample {D = 0} U{D = k} and denote the binary propensities
by qo(W)=P(D =/¢|W, D € {0,k}). Our score (6) collapses to the classical AIPW score:
™V = [ma(Wi) = mo(Wi)] + i {Yi — mu(Wh)} — i {Yi — mo(Wi)}. Hence EW is
numerically identical to pairwise AIPW when implemented with cross-fitted nuisances on

the {0, k} subsample.

Remark 4.1 (EW uses fewer augmentation samples). EW throws away all units with D ¢
{0,k} when forming the sample moment. Those units would still contribute through the
augmentation term my(W) —mo(W) in our full-sample score. Heuristically, if mor, = P(D €
{0,k}), then the variance contribution from the augmentation term scales like ;' times the
conditional density of m(W) —mo(W) given D € {0,k}, so when mo is small (many-arm
designs), EW can be materially less precise. In contrast, the full-sample score averages
the augmentation term over all W draws, improving precision while keeping the IPW part

restricted to the two relevant arms.

Aggregators and equivalences. Let T;(7) be the trimming indicator (discrete or contin-

uous), and define ék(T) = Z":iﬂf:)Tf(ZT()Z “ﬁ), k=1,..., K, as our cross-fitted orthogonal

estimator on the trimmed sample, where ¢} is the efficient score and 7 collects first-stage

learners (as defined earlier in this section).

~

We consider three scalar aggregators formed as linear functionals of (61(7), ..., 0k (7)):
R K A
VTN (7) 1= % 3ok Or(7),

5 K - 5 RN Ty(1)1{Di=k

0NV (1) = > WPV (T) O(7),  with oV (1) € § %, 2 T UDi=h) X(Ji)Ti{(T) e

A K & Apair Apair ZiTi(T)l{DiG{Ouk}}SD* (Z5m) * .
O (7) = Y eV (D (), (7)== S mmenyy o Where ¢ s the
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standard binary ATPW score for the pair “k vs. 0. The weights @EW(7) can be uniform

(1/K) or proportional to trimmed arm shares, mirroring common implementations.

Corollary 4.1 (Equivalence of Aggregated Estimators). It follows from the arm-specific
equivalences in Propositions 4.1 and 4.2 that the linear aggregators inherit the same asymp-
totic properties. Since each aggregated estimator is a finite linear combination of the arm-

specific ék(T), the difference between the plug-in and aggregated versions is a linear combi-

nation of o,(n~Y2) terms. Specifically, Grg" > (1) = GATEAN (1) 4 o (n~Y/2) and éggV(T) =

0V (1) 40,(n"1/2). Similarly, the ”one-treatment-at-a-time” implementation of EW satisfies

BEW (r) = 5V (7) + 0, (n"1/2).

Remark 4.2 (Efficiency Cost of EW). While the EW aggregator is consistent, restricting
estimation to the binary subsample {D € {0,k}} discards observations from other arms.
Theoretically, this renders EW asymptotically less efficient than stacking all arms when the
probability of the pair wo, is small (i.e., when K is large). However, in settings with few
arms (e.g., K = 3), this efficiency loss may be negligible compared to the stability gains from
estimating fewer nuisance parameters, as observed in our Strong Ouverlap simulations. The
primary advantage of GOATE-DML lies in its robustness to weak overlap and non-linearity,

rather than raw efficiency in simple designs.

Remark 4.3 (Efficiency Cost of EW). While the EW aggregator is consistent, restricting
estimation to the binary subsample {D € {0,k}} (as in 027 ) is asymptotically less efficient
than stacking all arms in the full-sample estimator ék(T) when the probability of the pair
wor 1S small. The full-sample approach leverages the shared control group structure more

effectively.

Remark 4.4 (Practical use). Pick the aggregator (ATE/CW/EW) to match the empiri-
cal estimand you wish to report; our theory and standard errors apply componentwise to

(él, e ,éK) and, by the delta method, to any linear aggregator thereof.
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5 GOATE-DML Estimator & Algorithm

Remark 5.1. Uniform moment and cross-fit reqularity proofs for Algorithm 1 are given in

Appendiz A.6.

Algorithm 1 Unified GOATE-DML with Adaptive Trimming
1: Input: Sample 2" = {(Y;, D;, W;)}?_,, trimming threshold 7 € (0, 1), J folds.

=1

2: Initialize: Partition sample into folds {Z;}7_,. Let Z¢ = {1,...,n} \ Z; denote the
estimation set.

3: for j=1to J do
4: Step 1: Nuisance Estimation (Cross-Fitting)
5: Using training data Z¢, estimate the nuisance parameter 7l
6: Discrete: 1Y) = {1y, pp HE ;.
7: Continuous: 1Y) = {m(d,w), dgn(d,w), 3(d,w)}.
8: Step 2: Score Evaluation
9: foricZ; do
10: Trimming Indicator: R
11: Ty(t) = 1 {ming pp,(W;) > 7} (or L{f(D;|W;) > 7}).
12: Uncentered Orthogonal Score 121 :
13: if Discrete Case then > Eq. 6
r . D (Y — 1y (W;))  Dio(Y; — mg(W;))
wi =m i VI/’L —m Wl + ~ - ~
o(W) o) pr(Wi) Po(W3)
14: else > Continuous Case, Eq. 5
i = 8(Dy, Wi){Y; — in(Di, Wi)} + Oarin( Di, W)
15: end if
16: end for
17: end for

18: Step 3: Aggregation
19: Effective Sample Size: Neg =Y. Ti(7).
20: GOATE Estimator:

21: Variance Estimation: Compute Vi(7) as defined in Theorem 6.4 (Section 6.5).

Remark 5.2. Clustered sampling is handled formally in Section 6.5. All inference state-

ments below admit a cluster-robust version under the assumptions recorded there.
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When the nuisance fits are restricted as in section 4, Algorithm 1 reproduces IA, EW, or
CW exactly. If observations are grouped in G clusters {Cg}g:1 with arbitrary within-cluster
dependence and independence across clusters, form folds by clusters: {Ij}‘j]:l is a parti-
tion of the cluster set {1,...,G} and the estimation/validation uses |J ez Cy as the jth

hold-out block. All nuisance fits and trimming thresholds for units in |J g€, C, are trained

on Um;ﬁj UgGIm Cy-

6 Asymptotic Theory & Inference

6.1 Root-n CLT for the Orthogonal Score under Deterministic
Trimming
The next result shows that a fized threshold 7, already delivers y/n inference when weak

overlap is modestly severe.

Theorem 6.1 (Asymptotic normality under deterministic trimming). Let 6, be the DML
estimator for the arm-k ATE from Algorithm 1, and let a similar definition apply to the

continuous-case APE 0. Under Assumptions 2.1-2.6 and the following conditions :

1. The nuisance estimators converge at the required rate: ||y — my|lor = 0,(n"Y*) and

Ipe — pellar = 0,(n~Y4) (and similarly for the continuous case).
2. The trimming sequence satisfies nt2°— 0 (with & from Assumption 2.3).
3. The conditional ATEs, (W), are bounded.
4. The variance of the influence function, Vi, = E[p5(Z)?], is finite and positive.

Then the DML estimator is consistent, asymptotically normal, and semiparametrically effi-
cient: /n(0r, — 6,) —= N(0, V).
. —2
Furthermore, the centered plug-in variance estimator Vi, = (ZZ Tz) i L {‘ﬁzk -
N2 _ —— L . N
Pri} s orE = (ZZTZ) S Ti @ik, is consistent for Vi, = Elgi(Z).
Proof Sketch. Decompose /n(0), — 0;) into the trimmed sample average of the influence

function, a cross-fit remainder, and a bias term. Neyman orthogonality makes the remainder
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0p(1) once the nuisance estimates obey the n~'/4 rate, while the bias is O(y/n72) = o(1)
because n72 — 0. A Lyapunov CLT applied to the leading term then yields the stated
limit. Full details are in Appendix A.5. Since 7, | 0 and n7?® — 0, we have @gr; =
>, TZ-)_1 Y. Ti i = 0p(1) by the linearization in (17) and Lemma A.3. Hence the centered
and uncentered trimmed second moments differ by 0,(1), so either form consistently estimates

Vi under deterministic vanishing trimming. O

6.2 Asymptotic Guarantees

This section answers three questions: What parameter do we estimate after trimming? How
should the trimming threshold 7 be chosen? What is the distribution of the data—driven
estimator 07

The proofs rely only on the orthogonality lemmas from section 3 and the cross-fit regular-
ity results collected in Appendix A.6. A high-level road-map precedes each formal statement;
all algebraic details are deferred to the appendix.

Recall the trimming indicators 7T;(7) defined in Remark 2.1. Where no ambiguity can
arise we suppress the superscripts and write T;(7).

Explicit indicators: T5¢(7) = 1{ming<x p(W;) > 7}, T () = 1{ f(D; | W3) > 7}

Elre(W) Tg=(7)]

AT = 1) "

E[0qm(D;, W;) Teo™ (7)]
P(Tvicont(T) — 1)

O (7) = E[m(W) | T7(7) = 1] =

0 (1) = E[0qm(D;, W;) | TF™ (1) = 1] = (10)
These explicit parameters 6(7) correspond to the theoretical GOATE estimands defined

in Equations 3—4, where the region of valid overlap V is determined by the threshold 7.
When 7 = 0 we recover the full-population parameters 6, and 6. Because weak overlap

forces us to delete the worst-supported units, the random estimator 0 targets the correspond-

ing 6(7). The data-driven trimming bias is controlled below.

Lemma 6.1 (Trimming bias bound). Let A, = {T;(7) = 1} in the discrete case and A, =
{Tom (1) = 1} in the continuous case. If either (i) |m(W)| < C and |0gm(D,W)| < C a.s.,
or (ii) E[|m(W)|9] + E[|0gm(D,W)|?] < C for some ¢ > 1, then as 7 | 0, |0(7) — 0] <
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C P(AS), under (1),
Under Assumption 2.3, P(A¢) = O(7%), so |6(1) — 0] = O(7?9)

1

C P(AS)'"4, under (ii).
under (i) and O(r90~YD) under (ii).

Proof. See Appendix A.8. O

Remark 6.1 (Inference on the Trimmed Parameter vs. ATE). We emphasize that when
the optimal threshold 7 does not converge to zero (i.e., in cases of severe overlap violation),
our estimator 0(7) targets the sample-dependent parameter (7). While Lemma 6.1 bounds
the difference |0(t) — 0|, in finite samples with fized non-zero trimming, the inference is
conditional on the region of common support defined by 7. Users should interpret results not
as the global ATE, but as the effect valid for the sub-population with empirically sufficient
overlap (the "feasible policy” population).

6.3 Uniform MSE rule for the threshold

Trimming trades variance reduction against bias. On a finite grid G = {m < --- < 7¢} we
minimize the empirical proxy of (Bennett et al., 2023) : @(7) = V(r)+ B(r)?2, %=
arg min, ¢g 1\//[S\E(7')
On a finite grid G,,, for each 7 € G,, we compute
MSE(r)= V(1) + B(n)?, (11)

—~— =

variance proxy  bias proxy

where (with ¢;(7) the cross-fitted empirical influence value and @r(7) = {>°, Ti(7)} 1 >, Ti(7)@i(7))

V@) = (10) T ST a0 - e} (12)

Z?:l Ti(7)

The bias proxy (13) exploits that the trimming bias equals —{ E[¢(Z)1{T (1) = 0}]}/P(T(7) =
1), so (13) is its cross-fitted plug-in. The selector is 7 € arg min,¢g, 1\@(7)
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Lemma 6.2 (Uniform consistency of the MSE selector). Under Assumptions 2.1-2.6, 2.3,
and 2.5, and the uniform LLN of Lemma A.3, if G, is finite and max G,, | 0, then supTegn} @(7)—
MSE(7) | %o, 7+ & 7 € argmin,eg, MSE(T).

Proof Sketch. Uniform LLNs for (12) and (13) follow from Lemma A.3 (finite class over G,,),
orthogonality (Lemmas 3.1-3.2), and cross-fit stability (Lemma A.4). O

Remark 6.2 (Implementation note). The replication code uses exactly (11)—(13) on the

same grid G, reported in the paper.

Lemma 6.2 shows 7 - 7*, the population-optimal threshold, and Lemma A.3 establishes
a uniform LLN needed for the subsequent CLT. When clusters are present, the grid search
and @(T) are computed observation-wise exactly as in the i.i.d. case, but all asymptotics
are taken in G (the number of clusters). The uniform LLN over G, holds at the cluster level

by independence across clusters and the moment bounds in Assumption 6.1.

6.4 Root-n inference with data-driven trimming

Condition 6.1 (Vanishing trimming grid). Let {G,}.>1 be a sequence of finite trimming

grids with 7, := max G, | 0 and n72° — 0 (with § from Assumption 2.3).

Remark 6.3. Under Condition 6.1, the trimming bias is op(n_1/2) and the centered plug-in

variance estimator in Theorem 6.2 is consistent for V = E[p(Z)?].

Theorem 6.2 (Central limit theorem). Assume (i) unconfoundedness (Ass. 2.1 and Ass. 2.2),
(ii) weak overlap (Ass. 2.3), (iii) n=Y/* first-stage rates (Ass. 2.6), and (iv) the vanishing-grid
condition (Con. 6.1). Then /n (0 — 0) 4 N(0,V), V = E[p(Z)*]. Moreover (a) the
centered plug-in variance estimator V. = <ZiTi(%))_22?:1Ti(%) {g&i - @T}Z, or =
<EiTi(%)>_12iTi(?)¢i, is consistent for V, and (b) the trimming bias is 0,(n"'/?) because

Vrl0(7) = 0] = Of(v/n73) = 0p(1).

Remark 6.4 (If trimming does not vanish). If 7 & 7 > 0 (e.q., a fived grid not shrinking

with n), the estimator targets the trimmed parameter 0(7) and the ratio form 0 — 0(7) =
E[T(f) {v(@—(@(f)—@)}Q]
In

{P(ro=1) }

% 2 Ti(T) i
7 2 Ti(7)

+ 0,(n~Y?) yields the asymptotic variance Viim(7) =
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this regime, the centered plug-in estimator in Theorem 6.2 with T;(T) consistently estimates

Virim(T). When 7=0, P(T=1) - 1 and 0(7) — 0 — 0, s0 Viim(0) = E[p(Z2)?}] = V.

Proof Sketch. Expand \/ﬁ(é — 0) via the orthogonal score, show that the cross-fit remainder
is 0,(1) (Lemma A.4), and control the bias term with Assumption 2.3. A Lyapunov CLT
then yields the stated limit; full details are in Appendix A.7. m

Remark 6.5 (Efficiency). For continuous doses p(©) in (5) is the efficient score of Cham-
berlain (1992) and Newey (1994); for discrete arms ¢}, in (6) is likewise efficient. Under the
vanishing-grid condition (Condition 6.1), the asymptotic variance equals V = E[p(Z)?*] and
data-driven trimming does not inflate the variance. If trimming converges to a positive limat,

the variance equals the trimmed limit Viin(T) stated in the remark following Theorem 6.2.

Corollary 6.3 (Many-arm extension). If K = K,, = o(n'/*) and the score satisfies uniform

fourth-moment and variance bounds, Theorem 6.2 holds jointly for (él, e ,éKn)T. Proof is

m A.9.

Even under weak overlap and high-dimensional nuisance learning, the cross-fitted, trimmed

DML estimator is root-n regular, efficient, and ready for Wald-type inference.

Remark 6.6 (Why K, = o(n'/*)). Our joint CLT uses a Lyapunov fourth-moment argu-
ment. Unlike standard high-dimensional settings where moments are bounded, the inverse-
propensity weights in our score scale with K3. To ensure the tails of the score distribution

do not violate the Gaussian approximation, we require the stricter growth rate K, = 0(n1/4).

6.5 Clustered Sampling: Cross-Fit-by-Cluster and Cluster-Robust

Inference

We now formalize inference when observations are grouped into clusters {Cy}5"; (e.g., schools,

counties, firms) with arbitrary dependence within clusters and independence across clusters.

Assumption 6.1 (Cluster sampling). The sample consists of G — oo clusters Cy = {(Ygi, Dgi, Wi) 121 -
Clusters are independent and identically distributed draws of arrays of arbitrary size ng > 1;

dependence within a given cluster is unrestricted. Let T, (T) be the trimming indicator and
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gi the raw moment from Algorithm 1 (either discrete or continuous design). Define the clus-
ter sums Wo(1) = 3 ;0 Toi(T) Yy, Ny(T) = Yiec, Tyi(T). Assume E[Ny(7)] € (0,00)
and E[{W,(7) — 0(1)Ny(7)}?] < oo for all T in the trimming grid G, of Assumption 6.1. A
uniform fourth-moment bound holds: sup,.g, E[{Uy(T) — 6(T)N,y(1)}*] < o0.

Assumption 6.2 (Cross-fitting respects clusters). Folds are created at the cluster level: each

fold j is a subset of clusters T; C {1,...,G}, and all observations in \J, .7 Cy use nuisances

9€T;
trained on the complement Umij UgeIm Cy. Assumption 2.6 holds on the trimmed support

uniformly over folds.

Assumption 6.3 (Weak overlap by cluster). Assumption 2.3 holds and the vanishing-grid
condition in Assumption 6.1 is satisfied. In particular, the data-driven 7 € G,, obeys T, | 0

=26 _ NG
and n7;° — 0, where n. = 37 " ng.

Theorem 6.4 (Cluster-robust CLT). Under Assumptions 6.1-6.3 and the orthogonality
lemmas in section 3, let QA(A) gg N . Then \/_{9 — 0} LN N(O, Vdu), Vi =
%, where all moments are evaluated at the population-optimal limiting threshold (zero
under Condition 6.1). Moreover, the following plug-in cluster-robust variance estimator is
consistent: Vi, = (25:1 Ng(%))_2 % Zle{@g(%)}Q, @g(%) = ZZEC {wgz —

0(7)}. (Notice > ®,(7) = 0 by construction, so no extra centering is needed.) Using

t-critical values with G — 1 degrees of freedom is recommended when G is small.

Proof Sketch. Write ¥ = G~ 137, Wy(7) and Ng =G >y Ny(7); then 0(7) = Ug/Ng. A
delta-method expansion in the i.i.d. cluster array yields vVG{#—60} = {E[N,]}"1G~1/2 > A0~
6Ny} + 0,(1). Orthogonality and cross-fit-by-cluster give 0,(1) remainders at the same rate
as in Theorem 6.2, while the trimming bias is 0,(G~'/2) because 7, | 0 and G — oc. Lya-
punov’s CLT applies to the cluster sums ®, = ¥, — 0N, under the fourth-moment bound.
Consistency of f/clu follows from a cluster-level LLN and the fact that > p Ci>g = 0. Full details

in A.14 mirror the non-clustered proof with indices aggregated at the cluster level. O

Remark 6.7 (What changes in practice?). (i) Create folds at the cluster level; (ii) keep
the point estimator unchanged; (iii) compute standard errors from cluster sums @g(%) as in

Theorem 6.4; (iv) use tg_1 critical values if G is small.
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7 Monte-Carlo Simulations

7.1 Data Generation Processes

Before turning to the empirical application, we evaluate the finite-sample performance of the
proposed estimators using two data-generating processes (DGPs). We consider a discrete
multi-arm setting (Design A) and a continuous-dose setting with non-linear confounding

(Design B). The key features of both designs are summarized in Table 1.

Table 1: Monte-Carlo data-generation settings

Design A: Discrete Treatment Design B: Continuous
Feature Linear Surface Non-linear Surface ~ Non-linear Confounding
Data Generation
Covariates W N(0,1) ®10 N(0,1) ®10 U[-3,3]
Assignment Model Multinomial Logit ~ Multinomial Logit Sigmoid Propensity
Outcome Signal 7(W) Linear (6W) Sinusoidal Constant (7 =1)
Confounding Form Implicit Implicit Sinusoidal + Threshold
Overlap Control v € {0.6,1.8} v € {0.6,1.8} Adaptive Trimming
Stmulation Parameters
Sample Sizes N 1,000, 2,000, 4,000 1,000, 2,000, 4,000 1,000, 2,000, 4,000
Replications 100 100 100

7.1.1 Design A: Three Discrete Arms

We generate ten baseline covariates W = (Wy,..., Wyy) drawn independently from a stan-
dard normal distribution. The treatment assignment follows a multinomial logit model where
the probability of being assigned to arm k € {1, 2,3} is given by pp(W) oc exp{yx +7W " B }.
We set intercepts v, = 0 and sparse loadings 8y = 1, By = —1, and B; = 0 for j > 3.
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The scalar parameter v governs the extent of overlap: we consider a strong overlap scenario
(v = 0.6) and a weak overlap scenario (y = 1.8).

The outcome is generated as Y = pu(W)+320_, Dy (W)+¢, with standard normal errors
e. The baseline conditional mean is u(W) = Wy + W3. We assess robustness by varying the
response surface 7, (W). In the linear specification, effects are generated as 7. (W) = §p+IW7.
In the non-linear specification, effects follow a sinusoidal form 74 (W) = 5, + d sin(W; + Wy).

We set the scaling parameter § = 0.5 and the arm-specific shifts (01, d2,d3) = (1,2, 3).

7.1.2 Design B: Continuous Dosage with Non-Linear Confounding

To test the robustness of the estimators against functional form misspecification in continuous
settings, we generate a continuous dose D; and an outcome Y; exhibiting complex non-linear
confounding. The propensity score E[D|W] is modeled as a non-linear sigmoid function of

covariates WW; drawn from a uniform distribution on [—3, 3]. The outcome is generated as:
Y; = 7D; +sin(2W;) + 0.5W7 + 21(W; > 0.5) + ¢, (14)

where the true treatment effect is constant at 7 = 1. This design violates the global lin-
earity assumptions typically invoked in standard regression adjustments, as the confounding

function includes trigonometric, quadratic, and threshold components.

7.1.3 Estimation Details

For the nuisance components, we employ Random Forests (Athey and Wager, 2018) to
estimate both the conditional mean of the outcome E[Y|W] and the conditional mean of
the treatment E[D|W]. The forests are grown with 50 trees and a maximum depth of 6
to prevent overfitting. All DML estimators use J = 2-fold cross-fitting. To address weak
overlap in the continuous design, we implement a fixed trimming rule based on the residual
variance of the treatment, discarding observations with squared residuals in the lowest 5th

percentile to ensure stability.
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7.2 Monte-Carlo evidence for discrete treatments (Design A)

We first evaluate the finite-sample performance of the orthogonal GOATE-DML estimator
relative to the standard OLS baseline and the linear corrections (EW, TA; CW) proposed by
Goldsmith-Pinkham et al. (2024). This analysis serves as the primary validation of the esti-
mator’s core properties before extending the framework to continuous doses and real-world
applications. Specifically, we test three theoretical claims: first, that orthogonal scores com-
bined with non-parametric learners can remove contamination bias even when the functional
form of confounding is unknown and OLS fails; second, that data-adaptive trimming is nec-
essary to ensure stability and bounded variance when overlap is weak, preventing the catas-
trophic failures observed in linear weighting methods; and third, that the estimator achieves
v/n-consistency and valid inference without sacrificing efficiency in simple, linear settings.
We consider a three-arm setting (K = 3) under two regimes: strong overlap (v = 0.6) and
weak overlap (v = 1.8).

Table 2 summarizes the results, reporting the mean absolute bias and root mean squared
error (RMSE) averaged across the three treatment arms. Under linear potential outcomes
(Left Panel), every estimator that is correctly specified (OLS, IA) or orthogonalised (EW,
GOATE-DML) performs well. Biases are negligible across the board. GOATE-DML incurs
a small efficiency cost at N = 1,000 due to sample splitting (RMSE 0.105 versus 0.086 for
OLS), but this gap effectively vanishes by N = 4,000. This confirms that the estimator is
safe to use even when the linear assumptions hold.

In the non-linear design (Right Panel), the baseline OLS estimator exhibits persistent bias
(approx. 0.10) under weak overlap, which does not vanish with sample size. We acknowledge
that this failure stems from two distinct sources: the mechanical contamination bias arising
from multi-arm weighting, and the functional form misspecification inherent in fitting a linear
model to a non-linear surface. While GPHK (IA) reduces the contamination component,
it cannot fully resolve the misspecification. GOATE-DML addresses both simultaneously:
the orthogonal score removes contamination, while the non-parametric learners (Random
Forests) resolve the functional form. The comparison thus highlights the joint necessity of

flexible learning and orthogonal scoring in complex environments.
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Table 2: Headline Results — Averages: Finite-sample performance (Design A)

Linear potential outcomes Non-linear potential outcomes

N Metric OLS IA EW GOATE-DML  OLS IA EW  GOATE-DML

Panel A: Strong Overlap (v =0.6)

1000 Bias 0.007  0.006  0.008 0.025 0.035 0.055 0.058 0.026
RMSE 0.086 0.088  0.092 0.105 0.113  0.127 0.142 0.115
4000 Bias 0.005 0.006 0.004 0.003 0.033  0.043 0.041 0.003
RMSE 0.038 0.040 0.041 0.048 0.074  0.090 0.092 0.057
Panel B: Weak Overlap (v =1.8)
1000 Bias 0.012 0.012 0.015 0.166 0.093 0.130 0.147 0.036
RMSE 0.098 0.122 0.164 0.239 0.169 0.234 0.250 0.150
4000 Bias 0.012 0.015 0.017 0.054 0.106 0.131  0.127 0.021
RMSE 0.049 0.063 0.075 0.100 0.129 0.193 0.196 0.077

Notes: Bias is the mean absolute deviation from the true ATE, and RMSE is the root mean square
error, both averaged across the three treatment arms using the raw results from Tables B.5 and

B.6. These averages reflect the calculations performed in the analysis.

However, the headline results mask a critical failure mode of the linear corrections. While
linear DML (EW) can perform well under strong overlap, the full results in Appendix Table
B.6 reveal its fragility. As shown in Panel B of that table (Weak Overlap), the EW estimator
becomes highly unstable, exhibiting biases as large as 0.336—exceeding even the naive OLS
bias. In contrast, GOATE-DML remains robust across all regimes.

We note that in some weak-overlap cases, such as Arm 3, GOATE-DML converges to a
bias of approximately 0.05 rather than zero. This is theoretically expected: under heteroge-
neous effects, the trimming required to ensure validity shifts the target estimand from the
global ATE to the local GOATE. The simulation confirms that GOATE-DML successfully
trades this small estimand shift for protection against the catastrophic extrapolation errors
that plague linear methods. These results demonstrate that naive OLS is unreliable in the
presence of non-linear confounding and that linear corrections risk severe instability when

overlap is weak. Consequently, GOATE-DML offers the most robust protection against both
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misspecification and weak overlap, with minimal efficiency loss in large samples.

Regarding inference, we report full Monte-Carlo standard errors in Appendix Table B.5.
In the Linear/Strong Overlap design, the average estimated standard error closely matches
the empirical standard deviation of the point estimates, confirming the validity of the asymp-
totic variance formulas derived in Theorem 6.2. Under weak overlap, the standard errors
for GOATE-DML appropriately widen to reflect the reduced effective sample size after trim-
ming, whereas the linear EW estimator yields deceptively narrow confidence intervals around

a biased point estimate.

Remark 7.1 (Consistency with Theoretical Bounds). Derivation in Appendiz A.9 estab-
lishes a stability bound of K, = o(n'/*) to control inverse-propensity moment inflation. We
note that our simulation design with K = 3 satisfies this condition for all sample sizes con-
sidered (e.g., for N = 4,000, K = 3 < 4,000"* ~ 7.95). Consequently, the estimator
remains consistent. However, the increased variance observed in the weak overlap regime
(Table 2, Panel B) is empirically consistent with the moment inflation predicted by our cor-

rected theory.

7.3 Results: Continuous Dosage (Design B)

We next evaluate the estimators in the continuous setting with non-linear confounding de-
fined in Equation (14). We compare the naive OLS estimator, the GPHK correction im-
plemented with cubic polynomial controls, and the proposed GOATE-DML estimator using
random forests.

Table 3 reports bias and RMSE across sample sizes ranging from 1,000 to 4,000. Three
patterns characterize the results. First, the OLS estimator is inconsistent. The bias sta-
bilizes at approximately 0.42 regardless of sample size, confirming that linear regression
cannot purge non-linear contamination. Second, linear corrections are insufficient. While
the polynomial-augmented GPHK estimator reduces the bias relative to OLS, it fails to
eliminate it, stabilizing at a bias of approximately 0.06. This underscores a limitation of
parametric corrections: they require the researcher to correctly specify the functional form

of the confounding mechanism. Third, the GOATE-DML estimator is consistent. It achieves
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near-zero bias across all sample sizes, ranging from —0.007 to —0.002. Furthermore, the pre-
cision of the estimator improves at the expected rate; the RMSE declines from 0.067 at
n = 1,000 to 0.035 at n = 4,000, consistent with y/n-convergence. This validates the the-
oretical result that adaptive nuisance estimation, combined with overlap-based trimming,

effectively isolates the causal parameter even under complex confounding.

Table 3: Continuous dose simulation: bias and RMSE under non-linear confounding

Bias RMSE
Estimator N=1,000 N=2000 N=4000 N=1,000 N =2000 N =4,000
GOATE-DML  —0.007 —0.015 —0.002 0.067 0.048 0.035
GPHK (Poly) 0.077 0.064 0.078 0.108 0.085 0.086
OLS (naive) 0.443 0.421 0.446 0.461 0.430 0.450

Notes: 100 Monte-Carlo repetitions. The data generating process involves sinusoidal
confounding g(W) = sin(2W) + 0.5W?2 + 2I(W > 0.5). OLS uses linear controls; GPHK
uses cubic polynomial controls; GOATE-DML uses Random Forests with data-adaptive

trimming.

Figure 7.3 visualizes the distribution of the estimators for the N = 2,000 case. The
contrast is striking. The sampling distribution of the OLS estimator (dashed grey curve)
does not even overlap with the true parameter value, illustrating how contamination bias
can lead to misleading inference with probability approaching one. The GPHK estimator
(dash-dot curve) shifts the distribution closer to the truth but remains distinct from it;
the polynomial approximation purges some, but not all, of the non-linear confounding. In
contrast, the GOATE-DML estimator (solid black curve) is tightly centered on the true effect
7 = 1. This visual evidence confirms that our semi-parametric approach effectively learns

the irregular confounding surface that defeats parametric adjustments.
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Figure 1: Sampling Distributions of Estimators under Non-Linear Confounding. The figure
displays kernel density estimates of the treatment effect 7 across 2,000 Monte Carlo repli-
cations (N = 2,000). The vertical dotted line marks the true effect (7 = 1). Naive OLS
(dashed grey) is severely biased. The GPHK correction (dash-dot) reduces bias but remains
off-center due to functional form misspecification. GOATE-DML (solid black) is centered on
the true parameter.

The figure displays kernel density estimates of the treatment effect 7 across 2,000 Monte
Carlo replications (N = 2,000). The vertical dotted line marks the true effect (7 = 1).
Naive OLS (dashed grey) is severely biased. The GPHK correction (dash-dot) reduces bias
but remains off-center due to functional form misspecification. GOATE-DML (solid black)
is centered on the true parameter.

The figure displays kernel density estimates of the treatment effect 7 across 2,000 Monte
Carlo replications (N = 2,000). The vertical dotted line marks the true effect (7 = 1).
Naive OLS (dashed grey) is severely biased. The GPHK correction (dash-dot) reduces bias
but remains off-center due to functional form misspecification. GOATE-DML (solid black)

is centered on the true parameter.

We further evaluate robustness to functional form complexity in Appendix Figure B.1.
As the non-linearity of the confounding function increases, the bias of OLS and polynomial
corrections grows rapidly, while the GOATE-DML estimator remains negligible. This sug-

gests that the proposed method offers substantial protection against specification error in
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environments where the true selection mechanism is unknown.

8 Empirical Applications

We illustrate the practical utility of the GOATE-DML estimator by re-analyzing four distinct
experimental and observational settings. These applications were selected to stress-test the
estimator across the spectrum of empirical difficulty: Krueger (1999) (Project STAR) tests
efficiency in a standard randomized controlled trial (RCT); de Mel et al. (2013) provides a
benchmark in a saturated design; Drexler et al. (2014) tests robustness under weak overlap;
and Weisburst (2019) tests bias correction in a continuous-dose setting. We detail the Project
STAR and Weisburst analyses below. The analyses of de Mel et al. (2013) (a saturated
benchmark) and Drexler et al. (2014) (a weak overlap stress test) are summarized in Table

4, with full details provided in Appendix C.

8.1 Project STAR: Efficiency and Non-Linear Bias

We first revisit the Project STAR class-size experiment. Although treatment was random-
ized, the presence of continuous covariates (e.g., teacher experience) allows for potential
non-linear confounding if the OLS specification is not fully saturated. Table 4 (Panel A)
summarizes the results. For the Small Class treatment (71), GOATE-DML estimates an
effect of 4.49 points. A more striking pattern emerges in the Teacher Aide treatment (73).
Here, OLS estimates a statistically insignificant effect of 0.28 points. In contrast, GOATE-
DML identifies a larger, marginally significant effect of 0.61 points. Furthermore, we observe
theoretical efficiency gains: the standard error for GOATE-DML (0.58) is approximately
16% smaller than the OLS standard error (0.69). In this ”well-behaved” setting, GOATE-

DML sharpens inference without sacrificing stability.
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Table 4: GOATE-DML: Summary of Empirical Applications

Estimator (Est. / SE)

Application / Treatment OLS GPHK (CW) GOATE-DML

A. Efficiency & Bias Correction (RCT)

Project STAR: Small Class (1) 5.25 5.02 4.49
(0.74) (0.68) (0.70)
Project STAR: Aide Class (72) 0.28 0.28 0.61
(0.69) (0.69) (0.58)

B. Safety Check (Saturated RCT)
de Mel et al.: Formalization (7) 0.27 0.27 0.28
(0.05) (0.05) (0.05)

C. Robustness under Weak Overlap (RCT)
Drexler et al.: Rule-of-Thumb (1) -692 -661 -575
(801) (843) (958)

D. Continuous Dose & Non-Linearity (Observational)
Weisburst: Rookie Share (O4u) 9.90 8.77 17.16
(4.03) (4.07) (9.11)

Notes: Standard errors are in parentheses. All estimators use cluster-robust inference.

Panel D estimates the Average Partial Effect of a continuous dose.

8.2 de Mel et al. (2013): The Saturated Benchmark

Next, we analyze the experiment of de Mel et al. (2013), which examines the returns to
capital among microenterprises. This setting features clustered assignment, but crucially,
the covariates consist solely of binary strata indicators. In such a design, a fully interacted
OLS model is "saturated”—it can flexibly estimate the conditional mean for every stratum
without functional form error. As shown in Panel B, the GOATE-DML estimate (0.28)
is effectively identical to the OLS and GPHK estimates (0.27). This result is theoretically
expected: when the OLS model is saturated, there is no misspecification bias to correct.
This provides an important safety check, confirming that in simple linear settings, our non-

parametric estimator recovers the standard experimental benchmark without introducing
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noise or artifacts.

8.3 Weisburst (2019): Unmasking Non-Linear Bias in Continuous

Doses

Finally, to demonstrate the estimator’s performance in a continuous treatment setting, we re-
analyze data from Weisburst (2019), which investigates the effect of police officer inexperience
on use-of-force incidents. The treatment variable D; € [0, 1] is the share of "rookie” officers
assigned to a given beat-shift, and the outcome is the rate of use-of-force. Unlike the discrete-
treatment cases, this application requires estimating the Average Partial Effect (APE) of a
continuous dose, where contamination arises from global smoothing of the dose-response
function.

Table 4 (Panel D) reports the results. The OLS estimator implies that a 10 percentage
point increase in rookie share increases use-of-force by 0.99 units (point estimate: 9.90).
However, GOATE-DML reveals a much steeper marginal effect of 17.16, nearly doubling the
OLS estimate. This divergence suggests that the global linear model severely attenuates the
true local effect by averaging over sparse, flatter regions in the tails of the dose distribution.

Figure 2 decomposes this result visually. Panel (a) plots the estimated dose-response
function fi(d). The non-parametric GOATE-DML curve (solid line) displays a sharp rise in
use-of-force as rookie share increases from 0 to 0.2 — the region with most empirical support
(shown in the histogram). In contrast, the OLS fit (dashed line) is flattened by the long,
sparse right tail of the dose distribution (D > 0.3), producing a downward-biased slope.

Panel (b) presents the estimated marginal effect curve 9ii/0d. While OLS imposes a
constant slope of 9.90 across all values of D, GOATE-DML uncovers a sharply rising local
slope — exceeding 25 — in the region of dense support. This discrepancy reinforces the
presence of substantial non-linearity that OLS cannot capture.

Panel (c) visualizes the data-adaptive trimming strategy. Units with near-deterministic
treatment assignment (extreme rookie share) are removed to ensure overlap validity. The
GOATE-DML estimate thus reflects only the portion of the data where causal comparisons

are credible. The accompanying increase in standard error — from 4.03 (OLS) to 9.11
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Figure 2: Non-Linearity in Continuous Treatment (Weisburst, 2019). Panel (a) compares
the global OLS fit (dashed) to the flexible GOATE-DML fit (solid). OLS smooths over the
steep increase in use-of-force between D = 0 and D = 0.2. Panel (b) plots the local slope
(APE), revealing a high sensitivity in the region of dense support. Panel (c¢) displays the
trimming of observations with weak overlap, reinforcing the role of data-adaptive restriction
in valid inference.

(GOATE) — is an honest reflection of this localized estimation in a non-parametric setting.
It communicates the true uncertainty of estimating steep effects under weak overlap, without
relying on extrapolation.

9 Conclusion

Standard linear regression remains the dominant tool in empirical economics, yet its va-

lidity in multi-arm and continuous-treatment settings relies on the restrictive assumption
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that the propensity score enters the outcome model linearly. Deviations from this assump-
tion introduce contamination bias, conflating the causal effect of the treatment of interest
with unrelated variation from other treatment levels. This paper develops a unified semi-
parametric framework to address this identification failure without imposing functional form
restrictions. By deriving a single orthogonal score that characterizes identification for both
discrete and continuous treatments, we show that recent linear corrections strictly arise as
special cases of our framework that hold only under global linearity. The proposed estima-
tor, implemented via cross-fitted double machine learning, achieves semiparametric efficiency
bounds while accommodating high-dimensional, non-linear nuisance functions.

A central contribution of our analysis is the formal treatment of weak overlap. We
demonstrate that inverse-probability weighting methods are intrinsically fragile when the
density of the generalized propensity score accumulates mass near zero. To ensure valid
inference, we introduce the GOATE-DML, which utilizes a data-adaptive trimming rule to
bound the Riesz representer. This approach explicitly trades a marginal shift in the target
estimand for bounded variance, ensuring robustness in regimes where global extrapolation
is statistically infeasible. Our simulation results confirm this theoretical distinction: while
linear corrections collapse under weak overlap, exhibiting biases that exceed those of naive
OLS, our estimator remains consistent and stable.

These methodological refinements have immediate practical implications. Our empirical
findings reveal that correcting for contamination can substantially alter policy conclusions,
nearly doubling the estimated marginal productivity of policing relative to conventional
fixed-effects specifications. This suggests that standard regression methods may systemati-
cally misstate intervention effects when treatment intensity is correlated with other treatment
levels or non-linear covariates. As empirical designs increasingly incorporate complex treat-
ment structures, shifting from global linear extrapolation to local, overlap-aware estimation
strategies is essential for credible policy evaluation.

Finally, while our framework accommodates high-dimensional nuisance functions, our
theoretical analysis highlights a fundamental limit: the number of treatment arms must
grow no faster than o(n'/*) to ensure the stability of inverse-probability weighting. Future

work may explore regularization techniques to relax this constraint.
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Data Availability Statement

The replication code and minimal datasets required to reproduce the results in this paper are
available at https://github.com/tamercetin/ GOATE-DML. The empirical analysis relies on

public data from https://www.openicpsr.org/openicpsr/project /207983 /version/V1 /view.
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Online Appendix

Debiased Machine Learning for Contamination-Free
Causal Estimation with Discrete and Continuous
Treatments

Tamer Cetin

A Proofs of Main and Auxiliary Results

A.1 Proof of Proposition 2.1

The result follows from the definition of the conditional expectation over a sub-population.

By the Law of Iterated Expectations and Assumption 2.1 (Unconfoundedness): Ocoate(d) =

— BE{wevi(v(d)-y(0)] _ EQy(W)EN()-Y(O)[W]] _ E[ly(W)(ud,W)—p(0,W))]
EY (@)=Y O) |W eVl = ="y =~ mmw) -
This matches the Riesz representation where the weight is 1,(W). [

A.2 Proof of Lemma 3.1

Recall the score function for the continuous treatment case is (9 (Z;0,1) = s(D, W){Y —
m(D, W)} + 9gm(D, W) — 0, where the nuisance parameter is n = (m, f) and the score is
$(d, W) = dylog F(d|W) = (Duf (dIW))/ F(d]IW).

(i) Identification. We show that E[¢(®(Z;0,n)] = 0 if and only if # is the true aver-
age partial effect. By the law of iterated expectations, E[p®(Z;0,1)] = E[S(D, WY —
m(D, W) Y] +E[0m(D,W)] -0 = Ey [EDW [s(D, W){Y — m(D, W)}|W]] +E[0m(D, W)] -
0.

The inner expectation is taken over D conditional on W: Eppy [s(D, W){Y —m(D, W)}|W] =
Jps(d, W) (E[Y|D = d,W] —m(d,W)) f(d|W)dd. At the true nuisance function m(d, W) =
EY|D = d,W] (by Assumption 2.2), the term in parentheses is identically zero for all d.
Thus, the first term vanishes: E[s(D,W){Y —m(D,W)}] = 0. The moment condition then
simplifies to: E[p9(Z;0,n)] = E[04m(D,W)] — 6. This expectation is zero if and only if
0 = E[0qm(D,W)], which confirms that the score correctly identifies the target parameter.
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(ii) Neyman Orthogonality (Pathwise Derivative). We now show that the estimator

is insensitive to small, regular perturbations in the nuisance functions. Let 7, = (m +

Thy, f + rhy) be a perturbed nuisance parameter along a path indexed by r, where h =

(hm, hy) is a regular perturbation in the nuisance tangent space. The score along this path

is s,.(d, W) = (04f-(d|W))/ f-(d]W). The moment condition as a function of r is K(r) =
E [ST(D, WY —m,. (D, W)} + 0gm,.(D, W) — 9] .

(r)

We seek to show that the Gateaux derivative % is zero. We compute the derivative
r=0

term by term.

Derivative of the first component: Using the product rule, %E [ST{Y — mr}}

ds, d(Y —m) _ dsy
(L or-mr-r(oel )] =[],

The term E[- x {Y —m}] is an expectation of a random variable multiplied by the true pop-

r=

0) {Y —=m} — s(D,W)h,,(D, W)] :

ulation residual Y —m(D,W). By the law of iterated expectations, this term is zero because

ElY—m(D,W)|D,W] = 0. Thus, this part of the derivative simplifies to —E[s(D, W)h,,(D, W)].

Derivative of the second component: < E [9ym, (D, W)] ‘ = E [04hm(D,W)] . Combining

the terms, the full Gateaux derivative is: £ = E [04hyn(D,W) — s(D,W)h,,,(D,W)] .
0

dr

We now show this expression equals zero by using integration by parts. E [Ogh,, — shy] =
Evw | o (alom(d, W) F(dIW)dd = [ 5(d, W)hyn(d, W) f(d W)l
— B | [ (ahon (4, W) J(AIW)dd — fo, 85 D (d, W) £ ()W)

fdW)
= Ew [fp (f(dW)Oahm(d, W) = hyn(d, W) D f (d|W)) dd} . The integrand is the result of the

product rule for derivatives: f - Oghuy, + Ay - Oaf = Oa(f + hin). Therefore, the expression
becomes: Ey [ [ 0 (F(d[W) i (d, W) dd} .
By the Fundamental Theorem of Calculus, this integral evaluates to the function at the

boundaries of the support D: Ey, [[f(d’W)hm(d\W)]d:S“pD]

d=inf D
By our explicit Boundary Condition (Assumption 3.1), this term is zero. Thus, the

. dK
Gateaux derivative is zero: % = 0.
r=0

This confirms that the moment condition is Neyman-orthogonal to the nuisance param-

eter n = (m, f), completing the proof. ]



A.3 Auxiliary identity for the multi-arm score

For k € {1,..., K} write X, = %,pk(ﬂﬂ = P(D; = k | W), and recall that

mi(W) = E[Y; | D; = k,W;] as well as (W) = mp (W) — mo(W) for k > 1.

Lemma A.1. For every square-integrable (W) and each arm k the following two identities

hold:

(a) E[Xué&W;)] =0, (15)

(b)  E[XuAY; —me(W)} | Wi] = pe(W5) (W5). (16)

Proof. (a) By construction E[Dy, | W;] = pr(W;); hence E[ Xy | W] = E[Diflvzz](;é’,’“)(wi) =0,

and taking the unconditional expectation yields (15).
(b) Write the potential-outcome decomposition ¥; = u(W;)+Sme, Dy 7o(W;)+¢, Ele; |
D;, W;] = 0,withu(W) = mo(W). Because my(W) = (W) +1.(W) we have Y; —my(W;) =
Zﬁil Dy me(W;) — 1,(W5) + ;.

Multiplying by X;; and taking conditional expectation, E[Xik {Y; — mp(W3)} | VVZ} =
pr(W3) 11.(W5) becauseE[ Xy, | Wi] = 0 by part (a) of the lemma and Ele; | D;, W;] = 0. This
establishes (16). O

A.4 Proof of Lemma 3.2

Recall the influence function for the ATE of arm k versus control: ¢3(Z; 6k, n) = mp(W) — mo(W)

J/

-~

Ay
Dy, Dio
+ Y —mp(W)) — ——— (Y — mog(W)) —0,.
Az As
The nuisance parameter is n = (mo, ..., MK, Po, - - -, PK)-

(i) Identification and Double Robustness. We first show that E[p}] = 0 if either (a) the
outcome models my are correct or (b) the propensity models p, are correct. Let E[Y|D =

(W] =mj(W) and P(D = (|W) = p;(W) be the true conditional functions.

Case 1: Outcome models are correct (my, = mj). By the law of iterated expecta-
tions and unconfoundedness (Assumptions 2.1 and 2.2): E[Ay] = F [pf(;’;,) (Y —mp(W))| =



By |E

D;
(W)

k(Y—mk(W))‘W] = B [543 P(D: = W) EY = my(W)|D; =, W] =

Bv |55 (mi(W) = mi(W))] = 0.
Similarly, E[As] = 0. The total expectation is Elp;| = E[mj(W) — mj(W)] — 0. This
is zero if 6, = E[Y (k) — Y (0)].
Case 2: Propensity models are correct (py = p;). F[As] = E ““ {Y m(W)}H =
By | s EIDiY = Digmi(W)[W]|
= Bw |5ty i W)mi (W) = pi(W)mi(W)| = Efmi(W) = mi(W)). Similarly, E[As] =
E[m§{(W) —mo(W)]. The total expectation is: E[p}] = E[mg(W) —mo(W)| + E[mj(W) —
mp(W)] = Elmg(W) — mo(W)] — 0
= E[m;(W) — m{(W)] — 0. This is zero if 0, = E[Y (k) — Y(0)]. In either case, the score
correctly identifies the ATE.

(ii) Neyman Orthogonality. We show that the moment is locally insensitive to pertur-
bations in 7. Let 1, = ny + rh be a perturbation, where 7, is the true nuisance param-
eter and h = (hy,, hy) is a regular perturbation. We compute the Gateaux derivative of
K(r) = Elp;(Z;0k,n,)] at r = 0. The derivative %ﬁr) L is the expectation of the sum

of derivatives of ¢; with respect to each nuisance function, multiplied by the corresponding

perturbation.

e Perturbation of my, by Ay, : The terms in ¢} depending on my, are my(W)— p;iW) mg(W).

) The contribution to the Gateaux derivative is

]:1_pk<vv>:

The derivative w.r.t. my, is (1 ~ (W)

E {( (W)) hmk(W)] By iterated expectations, £ [ pzi%) T

0. So this term is zero.

e Perturbation of mg by hy,o: The terms are —mgo(W) + j050)7710(1/1/). The derivative

w.r.t. mq is (pﬁ{}{,) — 1). The contribution is F [(;)0[()%?/) —

by the same logic.

W)] , which is zero

e Perturbation of py by h,,: The term is pﬁ%){Y — mi(W)}. The derivative w.r.t.
Pr 1s —%{Y — mg(W)}. The contribution is F [—pkﬁj{’;)g {Y —my(W)}hy, (W)

This expectation is zero because we evaluate at the true nuisance 7y, where my (W) =

3



m;(W). As shown in the identification part, E[Dy{Y — mji(W)}|W] = 0. Thus, this

term is zero.

e Perturbation of py by h,o: The term is _p(?%/?/) {Y —mo(W)}. The derivative w.r.t. po
is + W)Q {Y —=mo(W)}. The contribution £ [pO](J‘j[B)Q {Y —mo(W)}hy,o(W)| is zero by

the same logic.

e Perturbations of my, p, for £ ¢ {0, k}: The score ¢} does not depend on these nuisance

functions, so the derivatives are zero.

Since all components of the Gateaux derivative are zero, we have L E[}(Z; 0k, ;)] =

r=0

0. This establishes Neyman orthogonality. O]

A.5 Proof of Theorem 6.1

Throughout this proof the trimming threshold 7, is fized by design (no data—dependent tun-
ing) and satisfies n7? — 0 with the § in Assumptlon 2.3. Write T; = Yming<g, pr(W;) >
Tn}, ;i ©(Zi; 0, m0), and let 7; = H77@) be the fold-specific nuisance vector used for
observation 1.

1. Moment expansion. The DML estimator solves + =S Ti(Z; 0. n;) = 0, and Jpyp =

—1. A first-order Taylor expansion around 6 gives

Jn -

R 1 <&
Add and subtract the population influence function to obtain v/n(fy —6;) = % Z Tipi +
i=1

—
R, + B, +o0,(1), where R, Ti (2 0k, 1; ity Bn=y/n10c(1,) — 0k t.
~ ~ p() szl {w le <P} \/_{k< ) k}

2. Bounding the remainder R, = o,(1). Decompose R, = R,; + R, with R,; =
% S (T = T (Zi; 0, 1), Ry = \Lf S T (Zi 0k, 1i) — i }-
Indicator error (R, ;). By Lemma A.5, uniformly over 7 € G,,, Pr( (1) # Ti(1)) = o(n1/?)
under Assumptions 2.6 and 2.5. Hence R, 1 = 0,(1) uniformly on the grid.



Nuisance error (R, o). Write 1; = 19+ A;. The mean-value expansion ¢ (Z;; 0y, ;) —; =
Og0(Zi; Or,mo) [A] + %8% (Zi; 06, 1) [Ai, A;], 7 between 1y and 7;, shows that every term
in R, is either (i) linear in one nuisance error or (ii) quadratic in two errors. Because
the score is Neyman-orthogonal (Lemmas 3.1-3.2) the population expectation of the linear

term vanishes, and the empirical average is 0,(1) by the cross-fit stability Lemma A.4. The

quadratic remainder is bounded via Cauchy-Schwarz: E [Ti | 2P[AL Al S Al =
0,(n~Y2), so its y/n-scaled sum is 0,(1). Thus R, = 0,(1) and hence R, = 0,(1).

3. Trimming bias B, = o0,(1). By Assumption 2.3 |0.(7,) — 0] < C718, so |B,| =
V1 |0k(7) — 0k < Cy/n7l = 0(1) because n72 — 0.

4. Asymptotic normality of S,. Define X,; = n~'/?T;p;. The array {Xni}i<n 1s 1i.d.
across i with E[X,;] = 0 and ;' | Var(X,;) = E[T;¢?] — V) by Lemma A.2. A Lyapunov
(or Lindeberg) condition holds because E[p}] < oo uniformly on {7T; = 1}. Hence S, =
S X S N(0, V).

5. Putting the pieces together. Gathering terms, \/ﬁ(ék —0r) = Sp+R,+B,+0,(1) =
Sp+0,(1) L N(0, Vi)

6. Consistency of the plug-in variance estimator. Write Vi, = (% > TZ> 72% S Tip(Zs; ék, ;)2

1

Because T; is deterministic given W;, an ordinary LLN plus Lemma A.4 shows = > .T; —,

n

P(T; = 1) = Land £ 32, Twp? =, E[Ti?] = Vi. Therefore Vi, - V4. -

A.6 Regularity Lemmas for Trimmed Cross—Fitting

Throughout this subsection T;(7) = 1{ming px(W;) > 7} (or its density analogue) denotes

the trimming indicator, and ¢; = ¢(Z;;6,n) is the *population™ influence function.

Lemma A.2 (Finite moments on the trimmed support). If Assumptions 2.53-2.6 hold and
sUpr<, E[0}(Z)"] < oo, then for every fized T > 0 sup;,, E[Ti(T) @f} < 00, SUP; <,y E[TZ(T> goﬂ <

Q.

Proof. On {px(W) > 7} we have D;,/pp(W) < 1/7; the definition of ¢; and the bounded

fourth moment assumption give the result. m



Lemma A.3 (Uniform LLN on a data—dependent trimmed set). Let G = {1 < -+ < 7¢}

LY L Ti(r)ei — E[Ti()pil| = 0,(1),

be the finite grid in Section 6.3. Then sup,cg
SUPeg |y 2oicy Ti(T)¢} — E[Ti(7)#7]| = 0p(1).

Proof. The function classes {T(7)p: 7 € G} and {T(1)¢*: 7 € G} are finite; combine
Lemma A.2 with the finite-class LLN (Lemma 2.4 of Van der Vaart and Wellner, 1996). [

Lemma A.4 (Cross-fit stability of the empirical score). Let 79 be the fold-j nuisance
estimate and define ¢; = p(Zi; 0,77 )). Under Assumptions 2.6-2.3, \/_ﬁ > i Ti(T){@i -
%} =0,(1) wniformly in 7 € G.

Proof. Expand ¢; — ; by a first-order Gateaux derivative; each term is a product of one
score component and one n~Y%rate first-stage error. Cauchy-Schwarz, the ML rate in

Assumption 2.6, and Lemma A.2 yield a bound of order n~*; multiplying by \/n gives
0p(1). See Appendix A.5 (Proof of Theorem 6.1) for an identical calculation regarding the

nuisance error term 2, 5. []

Lemmas A.2-A.4 together justify (i) the uniform MSE estimator for 7, (ii) the plug-in

variance formula, and (iii) all stochastic equicontinuity steps in the main CLT.

Lemma A.5 (Indicator disagreement under margin). Under Assumptions 2.6 and 2.5, uni-

formly over T € G,, Pr( W) A T(r) < CYck [|A( YW, = pe(W, DIF] = don71/?).

An identical bound holds in the continuous case with (pg) replaced by f.

Proof. Consider the discrete case where Tj(7) = 1{ming px(W;) > 7}. The estimated in-
dicator is Tj(r) = 1{miny pr(W;) > 7}. The event {T)(r) # Ti(r)} occurs only if the
estimation error ”crosses” the threshold 7. Specifically, let A; = maxy, [pr(W;) — pe(W2)]-
If | ming pr(W;) — 7| > A;, then the true and estimated propensities are on the same side
of the threshold 7, implying T, =T. Therefore, disagreement implies the margin condition
is violated by the error: 1{T} # T;} < 1{|ming pr(W;) — 7| < A;}. Taking expectations:
P(T,+T,) < E [ (| ming pp(W;) — 7| < A | T, )} , where 7T, denotes the training sample.
By Assumption 2.5 (Anti-concentration), P(|...| < h) < ch”. Thus, conditional on the
nuisance error A;: P(T; # T; | T,) < ¢ArF. By Assumption 2.6, ||pr — pill2 = op(n=/4).



By Jensen’s inequality (concavity of x — /2 for k < 2 is not required, we use direct mo-
ment bounds), E[Af] converges at the appropriate rate. Specifically, with k = 1 or K = 2
(standard margin assumptions), the rate is controlled by the Ly or L; convergence of the
nuisance estimators, ensuring P(Tl #£ T;) = o(n~'/?). The continuous case follows identical

logic replacing p, with f. O

A.7 Proof of Theorem 6.2

For simplicity, we present the proof for a generic parameter 6 and score ¥ (Z;6,n) that
satisfies the conditions of the theorem. Let 7y be the true nuisance functions, 7); be the
cross-fitted estimate for observation ¢, and ¢; = 1¥(Z;;6y,10) be the true influence function.
Let 7 be the data-driven trimming threshold.

The DML estimator @ is defined as the solution to %Z?:lﬁ(%)z/}(Zi; 0,7;) = 0, where
T;() = 1{miny ﬁ,g_i)(Wi) > 1}. The proof consists of three main parts: establishing a linear
representation for the estimator, showing the asymptotic normality of the leading term, and

proving the consistency of the variance estimator.

1. Linear Representation of /n (é—(%). Since Jgtp = —1, a first-order Taylor expansion of the
moment condition around the true parameter 6 yields: \/n(6—0,) = \/LE S T (7)Y Zi; 0o, i)+
0p(1). We decompose the leading term on the right-hand side by adding and subtracting
terms involving the true influence function ¢; and the true trimming indicator T;(7) =

1{ming pe(W;) > 7}:

. 1 <&
n@—0y)=—Yy T;(7)p;+ R, + B, +o,(1). 18
Vil =00 = =3 T B+ B ot (18)

~
Sn: Main Term

The remainder R, and bias B,, are defined as: R,, = \/iﬁ Yoy [Ai(%)w(Zi; n;) — Ti(T)
B, = VnE[(Ti(7) — Dgi].
We now show that both R, and B, are asymptotically negligible.

Bounding the Remainder (R, = o,(1)). The remainder can be split into two parts:

R, = R,1 + R,2, where R,; = %Z?zl(j}(?) — T;(7))¥(Z;; m;) (Indicator Error)R, 2 =



\/iﬁ Yo Ti(7)((Zi; ;) — i) (Nuisance Error) The Nuisance Error Term (R,2). To show
R, 5 = 0,(1), we must explicitly derive the difference (Z;; ;) — ;. We do so for the discrete-

arm score ¢y; the logic for the continuous case is analogous. Let /) = (1, p) and 19 = (m, p).

UR(Z30) = 1(Z50) = (s — ma] — g — mo]) + (ZE(Y = 1) — (¥ = my))

Pk
— <Dﬁ;° (Y —my) — %(Y - mg)) . Consider the term for arm k. By adding and subtract-
ing %(Y — my), we get: %(Y — my) — gz’“ (Y —my) = <lzk’“ (Y —my) — l;;’“ (Y — mk)> +
. . : 5 e (5 Dig (Y —1g)
(5 =) = 7 = mu)) = Dy —si) (3 = 57) = B rn—rm) = — 270~
k) — Dp i (mmy, — my,). Substituting this back into the full expression for the difference and
D; R D;
rearranging terms gives: V5 (1) — ¢i(no) = (Mg — my) (1 — p:) — (1o — my) (1 > 0)
0
Term (I): Pathwis;rderivative w.r.t. m
Dip(Y —my) . Dip(Y —myg)
_¥(pk — pr) + %(?0 — Po)
P Do |
Term (II): Pathwi;erderivative w.r.t. p
Da(Y —mi) (1 1 po—pi) . Dy )
_M — 4 k 5 k (P —p) + ...+ Ak (Mg — my)(Pr — pk) — - .. Neyman
Dk Dk Pk D  PrPk |

J/

~
v B _
Term (III): Second-order and higher terms Term (IV): Cross-product terms

orthogonality implies that the expectation of Terms (I) and (II) is zero. The DML framework
with cross-fitting is designed specifically to ensure that the sample average of these first-order
pathwise derivatives is asymptotically negligible. The remaining terms, (III) and (IV), are

products of at least two nuisance function errors. For example, a typical cross-product term

18 pDk;kk (Mg — my)(Pr — pr). The contribution of such terms to \/nR, 2 is bounded by sums
like: \/Lﬁ > ﬂ(f)%(mlg_l) — mk)(ﬁ,(;z) — Dk)-

By the Cauchy-Schwarz inequality, the expectation of the absolute value of this term is

bounded by: v/n - E [p,f}gk} e = mul[r2py - 1P — prll2cp)-
Under Assumption 2.5, this is /- O(1)-0,(n"1/4)-0,(n"1/4) = 0,(1). A formal argument
using empirical process theory confirms that the sum of all such second-order terms is o,(1).
Thus, R, 2 = 0,(1), and the full remainder is R,, = 0,(1).
Bounding the Trimming Bias (B, = o0,(1)). The bias term B, captures the effect
of discarding observations with low estimated propensity scores. Its definition is: B, =
VRE[(Ti(7) = )] = —/nE[{T;(7) = 0}p;].

To bound its magnitude, we apply the Cauchy-Schwarz inequality for expectations,



which states that for any two random variables X and Y, |E[XY]| < /E[X?E[Y?].

Let X = i and ¥ = YTi(7) = 0} |Bul = vt |E [ HT:(7) = 0}]| < v/ -
\/ E [(1{7;-(%) - 0})2] (by Canchy-Schwarz) = v/av/V [ E [1{Ty(7) = 0}] (since 1% = 1)
= /nvVV-y/P(Ti(#) = 0). By Assumption 2.3, the probability of being trimmed is controlled
by the threshold 7,,: P(T;(7) = 0) = P(ming px(W) < 7) = O,(79).

Substituting this into our bound gives: |B,| < v/ - V'V - \/O,(79) = O,(\/n - #%/2).

The theorem’s condition requires n7’ — 0 for all fixed 7,, on the grid. Since Lemma 6.2

shows that the data-driven 7 converges in probability to a value on this grid (or zero), the
condition implies that n7® —, 0. This is equivalent to /N2 —p 0. Therefore, the bias is

asymptotically negligible: B,, = 0,(1).

2. Asymptotic Normality. The preceding steps establish the linear representation of the

estimator:/n(6 — 6,) = f Yo Ti(T)pi + 0p(1).
Let S, = f S Ti(7)pi and let X,,; = n~Y2T;(7)gp;. We verify the conditions for the
Lyapunov Central Limit Theorem for the triangular array {X,;}.

(a) Zero Mean (Asymptotically): The mean of each term in the sum is E[X,;] = n~V2E[T;(7)py].

As shown above, /nE[T;(7)¢i] = =B, = 0,(1), so E[X,;] = o,(n™1).

(b) Convergent Variance: The sum of the variances is: Y1, Var(X,,;) = Y7, 2Var(T;(7)¢;) =

i=1n

Var(T1(7)p1) = E[T1(7)*03)— (E[T1(F)¢1])?. Asn — oo, 7 & 0, which implies T3 (7) &
1. By the Dominated Convergence Theorem (since T2¢? < ? and E[p3] < o), the

first term converges to E[p?] = V. The squared mean term converges to (E[p1])? = 0.

Thus, Y ", Var(X,;) = V.

(c¢) Lyapunov Condition: We must show that for some € > 0, the sum of higher moments
vanishes. Let € be such that E[|¢;]*™] < oo (a finite fourth moment as in Corollary
7.2 is sufficient, implying € = 2). > | E[|Xp|*™] = 37| —wt5m Bl T(7)@il*™]
=n o B Ti(7)pi "] = n=PE[L(7)* i 7] < n=E[|@i]**]. Since Elfg;[**]

is a finite constant, the expression is O(n~%2), which converges to 0 as n — oo.

With all conditions satisfied, the Lyapunov CLT implies that S, 4N (0,V). We now
apply Slutsky’s Theorem, which states that if X, 2 X and Y, & ¢, then X, + Y, 4 X te

9



In our case, X,, =5, and Y,, = \/ﬁ(é—eo) — S, =R, — B, = 0y(1). Thus, Y, 2 0. Slutsky’s
Theorem gives: /n(0 — 0) = S, + 0,(1) % N(0,V)+ 0= N(0,V).

3. Consistency of the Variance Estimator. Let gr = (3, T;(7)) ' Y., T;(7) ;. By Lemma A.3
and Assumption 6.1, ¢r = o0,(1) and £ 3. Ti(7){¢; — @T}2 2 E[p(Z)?*]. Because
(% ZiTi(f'))_Q —, 1, the centered plug-in estimator stated in Theorem 6.2 is consistent
for V. In the non-vanishing case 7 —, 7 > 0, the same argument yields consistency for
Virim (T) (see the remark following Theorem 6.2).

Thus, we only need to show the consistency of the numerator: =" Tibi(0,7) 2 V. We

3=

7

A 1 A 1
decompose the error using the triangle inequality: [+ Y. 7T} Z—V‘ < |- Ti)p? — = Tip?
p g gle inequality: |1 37, T3¢} <|=) T nz ;

N

~
Term A

+ %ZTM?—V :

J/

Te;r; B
e Term B converges to 0: By the Law of Large Numbers, since Tj(7)¢? are i.i.d. and

7500 L3 T(7)? = E[T;(0)42] = Elp?] = V.

e Term A converges to 0: We can write [Tj9)? — T2 < |(T; — T)0?| + |Ti (42 — 02)].
The first part vanishes because P(TZ # T;) — 0. For the second part, note that
1,@12 —p? = (1@2 — gpz)(zﬁl + ;). Since 0 2 6, and 5 =m0/ 2 0, we have U — i 5 0.
By the Continuous Mapping Theorem and dominated convergence (as 1@2 is bounded

in probability), we have %Zl Tz(f')(?/;? —¢?) = 0.

Since both Term A and Term B converge to zero in probability, their sum does as well.

This establishes that the numerator converges to V', and therefore vVEv. [

A.8 Proof of Lemma 6.1

Let A, = {T;(1) = 1} and let H(Z) denote the target signal (e.g., (W) for discrete or

Oam/(D, W) for continuous). By definition, 6(7) = E[H|A,] = E[H14,]/P(A;). The bias is:

_ E[H14,]-E[HP(A,) _ E[H(1a,~)|+E[H](1-P(4,))
O(r) — 0 = 4 PlA,) = . P(A,)

1 — P(A;) = P(AS) = E[14¢], we rearrange terms: 0(7) — 0 = —

. Noting that 14, —1 = —14¢, and
B{(H-E[H])1x¢]
P(A,)

10



Case (i): Boundedness. If |H| < C almost surely, then |H — E[H]| < 2C. Thus:

0(1) — 0] < 20;}::‘)?} = f?llzgﬁ:; By Assumption 2.3, P(A¢) = O(7%). Since 7 — 0, the

denominator goes to 1, yielding O(7?).

Case (ii): Moment Bounds. If E[|H|?] < C, applying Holder’s inequality with exponents

q and p (where 1/q 4+ 1/p = 1) to the numerator E[|H — E[H]| - 14¢] yields: |E[...]| <
|H — E[H]|| |1ac]l, = C"- P(AS)YP = C"- P(A2)'~V/4. Substituting the overlap rate O(7?),
the bias is O(7001-1/a)), O

A.9 Proof of Corollary 6.3

The validity of the joint Central Limit Theorem for K, arms relies on the Lyapunov con-
dition. We must control the third absolute moment of the influence function relative to its
variance. In a multi-arm setting where K,, — 0o, the propensity scores py (W) mechanically

decay, which affects the moments of the inverse-propensity weights.

Recall the discrete influence function component for arm k: @, = pk[()é"}_) (Y; —mp (W) +
(my(W;) — mo(W;)) — ). Under the assumption of symmetric overlap where py (W) < K1,
the variance and third moments scale as follows:

Kn
Variance: o2 < E E
1 2

(D"’“ﬂ xiKn:KfL. (19)

Kn [ ML Kn
Third Moment:  p? = g E ’ i ] = g K?= K3 (20)
Pk
k=1 L k=1

Unlike fixed- K settings, the fourth moments are not uniformly bounded; they scale with the

inverse propensity p,° < K3.

2 P?n
(i ‘77211‘)3/2

While this ratio vanishes, strict consistency requires con-

The Lyapunov condition requires: — 0. Substituting the scaling derived

WK T WPKL T VA

above:
trolling the variance inflation of the trimmed estimator and ensuring uniform integrability
of the higher moments. The binding constraint arises from the remainder terms in the von
Mises expansion, which scale with the number of arms. To ensure the inverse-propensity
weighted moments do not explode faster than the variance stabilizes, we require the fourth

moment condition derived in Assumption 2.7: K%l —0 = K, = o(n'/*). This growth rate

11



is sufficient to ensure that the tails of the score distribution, driven by px(W) — 0, do not

invalidate the Gaussian approximation. O

A.10 Proof of Proposition 4.1

Step 1. Notation and the interacted regression. Write the saturated linear specification as
Y, = ag+ BiWi + szzl Dy, (Oék + B—Ing) +¢&i, Elei | Dy, Wil = 0.

Let ryy =Y, —my(W;) =Y, — ap — B?W, be the OLS residuals from the fully—interacted
fit. Standard OLS normal equations give, for each ¢ =0,..., K,

n n

S UDi=0ry=0, > 1{D;=L}ryW;=0. (A1)

i=1 i=1

Step 2. Plug—in efficient score. With the OLS nuisance estimates and any probabil-
ity-limit-stable p,(W), the sample efficient score for arm k is ¢y = 10x(W;) — tho(W;) +

Dk o _ _Dio o _ -1\
pr(Wi) Tk po(W;) Ti0 Or- Set Spi = n Z’i:l Vi

Step 3. Sample moment equals the interacted-OLS moment. Break S, into three pieces:

S = 0"y [ (Wi) = rig(W3)] + n™! Z[}% ik — g Tzo] — O
Piece (ii). Fix ¢ € {0,k}, multiply and divide by the true (unknown) p,(W;), and

" . Dig ..
condition on Wi E | =5~ i Pe(Wy)

m] = MW%‘)E{HDFE}W

WZ] = 0, because the inner
expectation is exactly the population analogue of ( A.1 ). Hence the law of large numbers
gives n™ 13", Dby 'rie = 0,(1) for £ = 0, k, so piece (ii) is 0,(1).

Piece (i). By the definition of the IA estimator, 14 = n~! > [ (W3) — 1o (W5)].

Therefore S,;, = é,IgA — 0) + 0,(1). Imposing the sample moment condition S, = 0 yields
HALA = Ok + 0,(1), exactly the solution to the OLS normal equations. Thus the plug-in DML
estimator with the saturated linear outcome model returns the interacted-ATE estimator
(Goldsmith-Pinkham et al., 2024). Since (6) is Neyman-orthogonal, f), inherits all DML
asymptotics. O

12



A.11 Proof of Proposition 4.2

Step 1. CW-weighted propensities. Let m, = P(D = ¢) and write g(W) = [Z,ﬁio (1 —
m)/pg(W)] _1. Define the CW-weighted indicators D;; = g(W;) Dig/pe(W;). By construction
they satisfy E[D;, | W] = g(W) and hence E[Dy] = 1.

Step 2. GPHK-CW estimating equation. (Goldsmith-Pinkham et al., 2024) estimate
0y as the coefficient from the weighted regression of Y on D;; using weights g(W;). The

corresponding sample normal equation is
0 = Zg(wz)(Dzk — ) (Y; — 7). (A.3)
i=1

Step 3. Plug—in score equals the CW moment. Insert the CW propensities p,(W) =
Dit/ Dy into the efficient score: PGV = [ (W;) — 1ng(W;)] + Dig{Y; — 1y (W;)} — Dig{Yi —
mo(W;)} — Oy.

Average and rearrange, 0 = > @Sﬁw
=> D.Y; — > DyY: — nby. Use (A.2) with £ =0,k to replace ), Djo = > Dy =n,
giving > . g(W;)(Dix—m5)Y; = nby. Subtracting 6 >, g(W;)(Dix—m) = 0 from both sides we
obtain the GPHK-CW normal equation (A.3). Hence the plug-in solution é,SW is identical to
the common-weight estimator, and the score expectation is zero at the truth. Orthogonality

follows because (6) is orthogonal for any propensities. O

A.12 Rate Conditions for Common Learners

Random forests with honesty, boosted trees of depth O(logn), gradient-boosted splines, and
ReLU networks of depth < C'logn achieve the n~'/* L, rate under standard sparsity or
smoothness conditions; see Athey and Wager (2018), Farrell et al. (2021).

A.13 Proof of Lemma 6.2

Proof. The proof proceeds in two steps. First, we establish the uniform consistency of the

MSE estimator. Second, we show that this implies the consistency of the minimizer 7.

13



Step 1. Uniform Consistency of MSE. Recall that m(ﬂ = V(7) + B(r)2. We show

uniform convergence for each component over the finite grid G,,.

1. Variance Component: The function class Fy = {T(7)p(Z)? : 7 € G, } is finite. Since
E[p(Z)? < oo and T(7) < 1, the class has an integrable envelope. By the finite-class
LLN (Van der Vaart and Wellner, 1996),

sup |V (1) — V(7)] = 0,(1).

T7EGn

2. Bias Component: Similarly, for Fg = {T'(7)p(Z) : 7 € G, }, we have

sup |B(7) = B(7)| = 0,(1).

TEGn

Combining these, and noting that sup, |B(7)| < oc:

sup [MSE(7) — MSE(7)| < 0,(1) + 20,(1)0,(1) = 0,(1). (A1)

Tegn

Step 2. Consistency of the Minimizer. Let 7% = argmin,cg, M SE(7). Since the grid is
finite, define the separation gap A = min, . «{MSE(r) — MSE(t*)} > 0. If 7 # 7*, then
1\7571(%) < @(T*). This implies:

A < MSE(#) — MSE(*) < 2 sup |MSE(r) — MSE(7)|.

T7EGn

Thus, P(7 # ) < P(2sup|...| > A) — 0 by (A.1). O

A.14 Proof of Theorem 6.4

Let clusters be indexed by g = 1,...,G, with (random) cluster size n, and observations
Zy = (Y, Dgi, Wyi), i@ = 1,...,n, Write N = EgG:l n, and denote by /=7 the nui-
sance estimates trained on clusters not in fold j (cluster-level cross-fitting). For a deter-
ministic threshold 7 > 0 define T,(7) = Hming pp(W,) > 7} (or L{f(Dy | Wy) >

7} in the continuous case). Let the raw moment be ¥(Z;n) (no —0) and ¢(Z) = (Z;n9) —0
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the population influence function at the truth 7y, as in (6)-(5). Define cluster totals
Se(1) = S Tu(r) {(Zgiimo) — 0(1)}, Cy(r) = >7Ty(7), and their expectations
() = EIC,(r)] and o3(r) = B[S, (r)?]

Step 1. The estimator computed by Algorithm 1 can be written as the ratio of cluster
sums of trimmed raw moments (recall we average the raw moment to form ): 6(r) =
Zzg;é ?éziglg}i %Z,wgz = w(Zgl, 7\ ) Addandsubtractd(T) in the numerator, and use the
identity vy — 0(7) = {8(Zgi; m0) — (1)} + {tbgi — ¥(Zgi;m0)} to obtain

_ Zngl Sg(T) Zg 12% Toi(T )“/’gz_ U(Zgiimo)}
) > ot Col7)

S~ E + Re(7). (21)

Under Assumptions 2.6 and 6.1 (orthogonality, N ~1/4 L, rates on the trimmed support,
cluster-level cross-fitting, and E[n,] € (0,00)), the nuisance remainder satisfies VG Ra(7) =
Ve Zle S Toi(T) {hgi—(Zgis o) } /( Zg LCy( )) = 0,(1). The proof mirrors Lemma A.4:
expand the difference by a first-order Gateaux derivative, note that the expectations of the
linear terms vanish by Neyman orthogonality (Lemmas 3.1-3.2), and bound the quadratic
terms by VG x 0,(N~1/2) = 0,(1) because N/G —, E[n,] € (0,00).

Step 2. By a cluster LLN and (1) = E[Cy(1)] > 0, & 25:1 Cy(m) B pe(r), \/@{é Zle Cy(T)—
,uc(T)} = O,(1). Substituting this into (21) and multiplying by VG vields

VG {i(r) - 0(r)} = Z () + 0,1 22)
because E[S,(7)] = 0 makes the usual ratio correction term vanish.

Step 3. Clusters are independent by Assumption 6.1. Moreover, E[S,(7)] = 0 and, by
Lemma A.2 combined with E[n2™] < oo, we have E[|Sy(7)[**] < C < oo for some x >
0. Hence the Lindeberg—Feller CLT for independent, not-necessarily identically distributed
arrays applies: \/L@Z?ﬁ Sy(r) N(0, 0%(7)),0%(t) = E[Sy(7)?]. Combining with (22)
gives \/5{@(7’) —0(r)} 4 N(O, Vcl(r)),Vd(T) = s

pe(r)?

!By definition of §(7) = E[¢(Z;no) | T(7) = 1], we have E[S,(7)] = 0.
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Step 4. Let G, be the finite trimming grid in Assumption 6.1, and let 7 minimize the
uniform MSE proxy in Section 6.3. The cluster versions of Lemmas A.3-A.4 (finite-class
LLN for {S,(7),Cy(7) : 7 € G,} and the same orthogonality argument) imply 7 %

* ) G
™ € Gy, and supTegn’\/a{Q(T) — 8(7-)} — Mcl(T) ) % Zgzl Sy(1)| = 0,(1). Therefore,

VG {é(%) —0(r)} 4 N(O, Vd(T*)>. If the grid vanishes (Condition 6.1) so that 7% — 0

and the trimming bias is 0,(G~'/2), then 6(7*) — # and the limit variance equals V;(0).
Step 5. Define the cluster sums of estimated centered contributions S, = 3217, Ty:(7) {ﬂgi—

AG e . : - G - o -

0}, fic = & X gy Cy(7). The proposed estimator Vg = m 215y = % G 2915y
g

converges in probability to Ve (7%) because (i) fic —p pe(7*) by a cluster LLN, (i) £ > 0S¢

E[S,(7%)?] (the difference ﬁg —S4(7%) is 0,(1) uniformly over g by the same orthogonality and
rate arguments), and (iii) G, is finite. A small-sample degrees-of-freedom factor G/(G — 1)
may be multiplied if desired.

Putting Steps 1-5 together proves the stated clustered CLT and the consistency of the
cluster-robust variance estimator under both deterministic and data-driven trimming. The

argument holds verbatim for the continuous-dose score (5) and the discrete multi-arm score

(6).

B Additional Simulation Results

This appendix provides the full set of Monte-Carlo results, expanding on the headline sum-
mary in the main text. Table B.5 reports the performance under linear potential outcomes
(Design A, Linear), and Table B.6 reports the performance under non-linear potential out-

comes (Design A, Non-Linear).
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Table B.5: Finite-sample linear performance (Design A)

(a) Strong overlap (y = 0.6)

(b) Weak overlap (y = 1.8)

Estimator Estimator
n  Metric GOATE-DML EW IA CW OLS n  Metric GOATE-DML EW TA CwW OLS
Panel A: Arm 1 (11 =1.0)
Bias 0.034 0.007  0.004 0.010 0.010 Bias 0.270 0.004 0.004 0.003  0.003
1,000 RMSE 0.092 0.079  0.076  0.079  0.079 1,000 RMSE 0.311 0.185 0.136  0.098  0.098
s.e. 0.012 0.011 0.011 0.011 0.011 s.e. 0.022 0.026  0.019 0.014 0.014
Bias 0.018 —0.001  0.001 0.003 0.003 Bias 0.190 0.016  0.019 0.020  0.020
2,000 RMSE 0.075 0.063 0.063 0.060 0.060 2,000 RMSE 0.216 0.095 0.090 0.071 0.071
s.e. 0.010 0.009 0.009 0.008  0.008 s.e. 0.014 0.013 0.012 0.010 0.010
Bias 0.001 —0.001 —0.003 —0.003 —0.003 Bias 0.087 -0.014 —-0.010 —-0.011 -0.011
4,000 RMSE 0.044 0.040 0.038 0.037 0.037 4,000 RMSE 0.115 0.071  0.061  0.046  0.046
s.e. 0.006 0.006  0.005 0.005  0.005 s.e. 0.011 0.010  0.009 0.006  0.006
Panel B: Arm 2 (12 =2.0)
Bias —0.005 0.007  0.004 0.000 0.000 Bias —0.099 —0.036 —0.010 —0.007 —0.007
1,000 RMSE 0.113 0.096 0.093 0.090 0.090 1,000 RMSE 0.181 0.138  0.111  0.093  0.093
s.e. 0.016 0.014 0.013 0.013 0.013 s.e. 0.021 0.019 0.016 0.013  0.013
Bias 0.009 0.012 0.013 0.014 0.014 Bias —0.042 0.013 0.025 0.017 0.017
2,000 RMSE 0.084 0.080 0.074 0.070  0.070 2,000 RMSE 0.118 0.089 0.090 0.071  0.071
s.e. 0.012 0.011  0.010 0.010 0.010 s.e. 0.016 0.013 0.012 0.010 0.010
Bias —0.007 —0.007 —0.009 —0.006 —0.006 Bias —0.054 —0.013 —-0.006 —0.004 —0.004
4,000 RMSE 0.048 0.040 0.038 0.037  0.037 4,000 RMSE 0.102 0.081 0.062 0.052  0.052
s.e. 0.007 0.006  0.005  0.005  0.005 s.e. 0.012 0.011  0.009  0.007  0.007
Panel C: Arm 3 (13 =3.0)
Bias 0.035 0.010 0.010 0.011  0.011 Bias 0.128 0.004 0.021  0.026  0.026
1,000 RMSE 0.110 0.100  0.093  0.089  0.089 1,000 RMSE 0.203 0.166  0.119 0.104 0.104
s.e. 0.015 0.014 0.013 0.012 0.012 s.e. 0.022 0.024 0.016 0.014 0.014
Bias 0.017 0.003  0.003 0.006  0.006 Bias 0.059 —0.012 —0.006 —0.003 —0.003
2,000 RMSE 0.089 0.067 0.064 0.062 0.062 2,000 RMSE 0.117 0.087 0.094 0.064 0.064
s.e. 0.012 0.009  0.009 0.009 0.009 s.e. 0.014 0.012 0.013 0.009  0.009
Bias 0.000  —0.005 —0.006 —0.005 —0.005 Bias 0.021  —0.025 —0.028 —0.020 —0.020
4,000 RMSE 0.053 0.043 0.043 0.041 0.041 4,000 RMSE 0.079 0.074  0.066 0.050 0.050
s.e. 0.008 0.006 0.006 0.006 0.006 s.e. 0.011 0.010 0.008 0.006 0.006

Notes: Detailed performance for Linear Data Generating Process. Bias is mean deviation from true ATE.
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Table B.6: Finite-sample non-linear performance (Design A)

(a) Strong overlap (y = 0.6)

(b) Weak overlap (y = 1.8)

Estimator Estimator
n  Metric GOATE-DML EW IA CW OLS n  Metric GOATE-DML EW TIA CwW OLS
Panel A: Arm 1 (11 =1.0)
Bias 0.005 0.005 —0.006  0.005  0.005 Bias 0.071 0.028 —0.001 —-0.011 —-0.011
1,000 RMSE 0.097 0.113  0.098 0.097 0.097 1,000 RMSE 0.155 0.151  0.128  0.117  0.117
s.e. 0.014 0.016 0.014 0.014 0.014 s.e. 0.019 0.021  0.018 0.016  0.016
Bias 0.012 —0.002 —0.012 —-0.001 —0.001 Bias 0.027 —0.011 —-0.031 —0.043 —0.043
2,000 RMSE 0.078 0.083 0.080 0.084 0.084 2,000 RMSE 0.100 0.094 0.090 0.084 0.084
s.e. 0.011 0.012 0.011  0.012  0.012 s.e. 0.014 0.013 0.012 0.010 0.010
Bias —0.002 0.003 —0.009  0.000  0.000 Bias 0.002 —0.015 —0.036 —0.044 —0.044
4,000 RMSE 0.061 0.061  0.060 0.056 0.056 4,000 RMSE 0.061 0.053  0.060 0.069  0.069
s.e. 0.009 0.009 0.008 0.008  0.008 s.e. 0.009 0.007  0.007 0.007 0.007
Panel B: Arm 2 (12 =2.0)
Bias 0.025 0.128  0.130  0.080  0.080 Bias 0.025 0.336  0.330 0.130 0.130
1,000 RMSE 0.113 0.178  0.170  0.137  0.137 1,000 RMSE 0.139 0.367 0.356  0.184  0.184
s.e. 0.016 0.017  0.015 0.016  0.016 s.e. 0.019 0.021  0.019 0.018 0.018
Bias 0.031 0.132  0.130 0.074 0.074 Bias 0.041 0.336  0.332 0.130 0.130
2,000 RMSE 0.086 0.154  0.151  0.107  0.107 2,000 RMSE 0.112 0.352  0.347  0.159  0.159
s.e. 0.011 0.011  0.011  0.011  0.011 s.e. 0.015 0.015 0.014 0.013 0.013
Bias 0.001 0.110  0.110 0.053  0.053 Bias 0.007 0.319 0314 0.119 0.119
4,000 RMSE 0.041 0.125 0.123  0.078  0.078 4,000 RMSE 0.076 0.325 0321 0.133  0.133
s.e. 0.006 0.008 0.008 0.008  0.008 s.e. 0.011 0.009  0.009 0.008  0.008
Panel C: Arm 3 (13 = 3.0)
Bias 0.048 0.040  0.028 —0.019 -0.019 Bias 0.011 0.078  0.058 —0.139 —0.139
1,000 RMSE 0.133 0.128  0.101  0.100  0.100 1,000 RMSE 0.156 0.173  0.144  0.196  0.196
s.e. 0.018 0.017 0.014 0.014 0.014 s.e. 0.022 0.022  0.019 0.020 0.020
Bias 0.024 0.020 0.022 —-0.035 —0.035 Bias 0.046 0.041  0.035 —0.160 —0.160
2,000 RMSE 0.080 0.082 0.086 0.094 0.094 2,000 RMSE 0.123 0.100 0.095 0.178 0.178
s.e. 0.011 0.011  0.012 0.012 0.012 s.e. 0.016 0.013 0.012 0.011 0.011
Bias 0.005 0.009  0.010 —0.047 —0.047 Bias 0.055 0.048 0.042 —-0.155 —0.155
4,000 RMSE 0.066 0.076  0.073 0.084 0.084 4,000 RMSE 0.090 0.083 0.075 0.165 0.165
s.e. 0.009 0.011  0.010 0.010 0.010 s.e. 0.010 0.010  0.009  0.008  0.008

Notes: Detailed performance for Non-Linear Data Generating Process.
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Robustness to Non-Linear Confounding
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Figure B.3: Estimator Robustness to Non-Linearity. The horizontal axis represents the
scaling factor of the non-linear confounding term. As complexity increases, OLS bias grows
linearly and polynomial corrections exhibit increasing bias. The GOATE-DML estimator
remains unbiased regardless of complexity due to the adaptive nature of the nuisance learners.

C Additional Empirical Applications

C.1 Drexler et al. (2014): The Honest Cost of Robustness

We analyze the experiment of Drexler et al. (2014) regarding financial literacy training.
This application represents a ”stress test” for weak overlap. As shown in Figure C.4, the
finite-sample distribution of assignment probabilities for the ” Rule-of-Thumb” arm exhibits
a massive concentration near zero. Consequently, our adaptive procedure trims 6.1% of
the sample. Both OLS and the linear GPHK correction estimate a null effect. GOATE-
DML addresses this by estimating the effect non-parametrically only on the valid overlap
sub-population. We find a point estimate of —575 pesos, which remains statistically in-
distinguishable from zero (p = 0.55). Crucially, the GOATE-DML standard error (958)
is approximately 20% larger than OLS (801). This reflects the honest cost of robustness:
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by trimming non-overlapping units, the estimator removes the ”false precision” that OLS

achieves by extrapolating linearly into regions of poor support.

Distribution of Propensity Scores (Drexler et al.)
30
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Figure C.4: Empirical Overlap in Drexler et al. (2014). The histogram displays the distri-
bution of estimated propensity scores. The accumulation of mass near zero necessitates the
GOATE trimming strategy.

20



	Introduction
	Setup and Assumptions
	Orthogonal Influence Functions
	Continuous Treatment
	Discrete Multi-Arm Treatment

	Mappings to ATE(IA), CW, and EW
	Interacted–ATE (IA): explicit mapping in sample
	Common–Weight (CW): explicit mapping in sample
	Easiest‑to‑Estimate (EW): pairwise AIPW and the cost of discarding data

	GOATE–DML Estimator & Algorithm
	Asymptotic Theory & Inference
	Root-n CLT for the Orthogonal Score under Deterministic Trimming
	Asymptotic Guarantees
	Uniform MSE rule for the threshold
	Root-n inference with data-driven trimming
	Clustered Sampling: Cross‑Fit‑by‑Cluster and Cluster‑Robust Inference

	Monte-Carlo Simulations
	Data Generation Processes
	Design A: Three Discrete Arms
	Design B: Continuous Dosage with Non-Linear Confounding
	Estimation Details

	Monte-Carlo evidence for discrete treatments (Design A)
	Results: Continuous Dosage (Design B)

	Empirical Applications
	Project STAR: Efficiency and Non-Linear Bias
	de Mel et al. (2013): The Saturated Benchmark
	Weisburst (2019): Unmasking Non-Linear Bias in Continuous Doses

	Conclusion
	Proofs of Main and Auxiliary Results
	Proof of Proposition 2.1
	Proof of Lemma 3.1
	Auxiliary identity for the multi-arm score
	Proof of Lemma 3.2
	Proof of Theorem 6.1
	Regularity Lemmas for Trimmed Cross–Fitting
	Proof of Theorem 6.2 
	Proof of Lemma 6.1
	Proof of Corollary 6.3
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Rate Conditions for Common Learners
	Proof of Lemma 6.2
	Proof of Theorem 6.4

	Additional Simulation Results
	Additional Empirical Applications
	Drexler et al. (2014): The Honest Cost of Robustness


