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Abstract

Causal inference is essential for informing dietary guidelines and reducing cardio-
vascular mortality. This paper, using harmonized NHANES data (1989-2018; N =
31,176), estimates the effect of fruit and vegetable (FV) intake on blood pressure
(BP) with the Debiased Machine-Learned Instrumental Variables (DML-IV) estimator.
DML-IV combines nonparametric, fully data-driven machine-learning first stages with
cross-fitting and Neyman-orthogonal moments to deliver \/n-consistent causal effect es-
timates and valid standard errors in high-dimensional settings. Compared to ordinary

least squares (OLS), two-stage least squares (TSLS), and naive ML-IV, DML-1V yields
an average reduction of 2.03 mmHg in combined systolic 4 diastolic BP per 100gday !
of FV intake (SE=0.49). Subgroup analyses corroborate the main results. These find-
ings strengthen the evidence base for F'V consumption in hypertension prevention and

demonstrate DML-IV’s practical utility for robust causal inference in medical research.

1 Introduction

Cardiovascular disease remains the leading cause of global mortality, with elevated blood
pressure (BP) responsible for approximately 17.9 million deaths annually (1). Population-
level studies emphasize that even moderate BP reductions can yield substantial public-health
benefits; a 1-2 mmHg decrease in BP is associated with a 5-10% reduction in cardiovascular
events (2, 3).

Controlled feeding trials demonstrate meaningful BP responses to increased fruit and
vegetable (FV) intake. In the DASH trial, U.S. adults on an FV-rich diet (8-10 serv-
ings/day) saw a 2.8 mmHg drop in systolic BP over eight weeks—approximately 0.5 mmHg
per 100 g/day of added produce (4). The six-month Oxford intervention achieved a 4.0 mmHg
reduction (~3.6 mmHg per 100 g/day) in systolic BP with daily FV supplementation (5).
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A recent meta-analysis of eighteen prospective cohorts reported that each 200 g/day in-
crease in F'V consumption was associated with a 3% lower risk of incident hypertension,
driven primarily by fruit intake, whereas vegetable intake alone showed no significant asso-
ciation (9). A pooled analysis of six randomized controlled trials found no significant change
in BP for each additional 80 g of FV intake, although substantial heterogeneity was observed
across trials (7).

Observational studies corroborate an inverse FV-BP association. In a cross-sectional
analysis of 2 195 U.S. adults from INTERMAP, each 100 g/day higher intake of raw veg-
etables was associated with an approximately —1.4 mmHg difference in systolic BP (8) and
long-term cohorts document a 2-4% lower risk of incident hypertension per additional daily
serving (~100g) of FV (9). Taken together, these benchmarks span a few tenths up to
3-4mmHg per 100 g/day, motivating rigorous causal estimation in nationally representative
samples.

While randomized controlled trials provide the strongest causal evidence, they often in-
volve relatively short durations, selected populations, and controlled settings that may not
generalize to the broader U.S. population. Conversely, observational associations cannot
disentangle unmeasured confounding from true dietary effects. Extracting a reliable causal
estimate from the National Health and Nutrition Examination Survey (NHANES), a large
and nationally representative dataset, therefore represents a significant methodological chal-
lenge and an important opportunity to complement trial-based findings.

Estimating causal dietary effects from NHANES data requires addressing both confound-
ing and reverse causation. Instrumental-variable (IV) methods—first introduced by (10) and
formalized by (11, 12)—offer a way to isolate exogenous variation in FV intake and thereby
recover unbiased estimates. Standard two-stage least squares (TSLS) has been employed in
epidemiological analyses of NHANES dietary data (13), but linear TSLS can struggle to cap-
ture nonlinear relationships, suffer from weak-instrument bias in high-dimensional settings,
and understate inference error when instruments are many or weak (14-17).

ML methods are introduced to produce more flexible first-stage fits, improving instrument
strength and modeling complex interactions (18-20). However, naive plug-in ML-IV reuses
the same data for both prediction and estimation, which introduces overfitting bias and leads
to undercoverage of standard errors (SEs) (20-22). DML-IV overcomes these limitations by
combining Neyman-orthogonal moments with cross-fitting, delivering /n-consistent causal-
effect estimates and valid SEs even in high-dimensional settings (23, 24).

This paper leverages harmonized NHANES waves spanning 1989-2018 to apply DML-IV
across a suite of ML first-stage learners to estimate the causal effect of FV intake on BP.
The headline XGBoost-based DML-IV model yields an average reduction of —2.03 mmHg



per 100g/day (SE=0.49mmHg), a magnitude comparable to controlled-trial benchmarks.
Subgroup analyses affirm the robustness and generalizability of this effect.

The paper proceeds as follows: Section 2 describes the NHANES data and instruments;
Section 3 outlines identification and estimation strategies; Section 4 presents full-sample and

subgroup results; Section 5 discusses robustness checks; and Section 6 concludes.

2 Results

2.1 Descriptive Statistics

Table 1 summarizes the key variables. Fruit—vegetable intake is right-skewed (mean 2.38g/day;
IQR 1.72g; range 0-7.8g), while blood pressure® is approximately normal (mean 193.8mmHg;
SD23.0). instruments also exhibit rich variation: log per-capita income runs from —1.95 to
4.60, and the country-of-birth indicator (plus its interaction with income) shifts FV in-
take substantially across subpopulations. Finally, demographics (age 30—59; education levels
1-5) and physiological controls (BMI 30kg/m?; total cholesterol 52mg/dL) are broadly dis-

tributed, ensuring both identification and the power to explore heterogeneity.

1Sum of systolic and diastolic readings.



Table 1: Summary Statistics

Variable Mean SD  Min P10 P25 Median P75 P90 Max IQR
Fruit & vegetable intake (g/day) 238 144 0.00 0.67 141 219 313 428 780 1.72
Blood pressure (systolic + diastolic, mmHg) 193.8 23.0 124.0 166.0 178.0 192.0 208.0 224.0 268.0 30.0
Log per-capita income® 1.10 0.86 -1.95 0.00 0.51 1.10 161 208 4.60 1.10
Born in produce-consuming country 1.28 0.45 1.00 1.00 1.00 1.00 200 200 2.00 1.00
Income x BirthOrigin (interaction) 1.38 1.28 -3.89 0.00 0.69 1.25 195 271 919 1.25
Red meat intake (g/day) 5.15 3.56 0.00 1.40 2097 469 6.51 9.00 572 3.54
Total grain intake (g/day) 6.71 3.70 0.00 270 4.44 6.25 827 11.0 46.3 3.83
Vitamin ratio 418 1.62 133 254 3.09 390 495 6.11 27.7 1.86
Body Mass Index (kg/m?) 299 719 136 222 249 286 334 391 775 849
Dairy intake (g/day) 1.50 1.31 0.00 0.14 0.65 1.27 199 293 226 1.34
Height (cm) 168.8 9.87 1353 156.0 161.6 168.4 1759 181.8 203.8 14.3
Total cholesterol (mg/dL)" 52.0 16.3 6.00 34.0 41.0 49.0 61.0 73.0 179.0 20.0
HDL cholesterol (mg/dL)¢ 5.15 1.07 209 3.88 442 5.07 577 649 21.0 1.35
Age (years) 444 855 30.0 320 370 44.0 52.0 56.0 59.0 15.0
Nut intake (g/day) 0.67 1.59 0.00 0.00 0.00 022 060 1.76 374 0.60
Education (categorical) 3.56 1.21 1.00 2.00 3.00 4.00 5.00 5.00 5.00 2.00
Race (categorical) 3.00 1.17 1.00 1.00 2.00 3.00 4.00 5.00 5.00 2.00
Gender (binary) 1.49 050 1.00 1.00 1.00 1.00 2.00 2.00 2.00 1.00
Marital status (categorical) 244 186 1.00 1.00 1.00 1.00 4.00 5.00 6.00 3.00

Notes: ® Negative values for log per-capita income reflect extremely low-income households with large household sizes; no winsorization or
clipping was applied.

b Total cholesterol corresponds to variable LBXTC (Total Cholesterol).

¢ HDL cholesterol corresponds to LBDHDD (HDL Cholesterol); LDL may be derived via Friedewald’s formula.
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2.2 First-Stage Prediction Diagnostics: Plug-in vs. DML-IV

To isolate the source of variation in IV estimates, first-stage predictive performance was
compared across plug-in and DML-IV estimators using identical machine learning models
and controls. Each estimator was evaluated across 20 replications using model-specific hy-
perparameter tuning and standardized inputs.

Across all linear and regularized models, both plug-in and DML-IV estimators yielded
near-zero prediction bias. The DML-IV approach exhibited slightly higher bias variability
due to sample splitting and cross-fitting, a known consequence of using out-of-sample pre-
dictions to ensure orthogonality. This additional variability is desirable in causal inference,
as it reflects honest uncertainty from model training.

Prediction variance was generally consistent between the two approaches. Notably, tree-
based and kernel models (Random Forest, XGBoost, SVR) produced higher variance under
DML-IV, suggesting that cross-fitting introduces slight instability in highly flexible estima-
tors. In the case of SVR, plug-in models achieved lower MSE but at the cost of pronounced
and persistent negative bias, highlighting the trade-off between in-sample fit and causal
validity.

These results confirm that DML-IV maintains comparable predictive performance to
plug-in IV estimators while yielding more robust inference by accounting for training un-
certainty. The negligible MSE differences indicate that the primary advantage of DML-IV
lies not in first-stage accuracy, but in its correction for finite-sample inference bias—a key
distinction explored in the next section.

Compared to OLS, TSLS, and plug-in ML-IV, the DML-IV coefficients are smaller and
their SE distributions are wider. This pattern arises because DML-IV enforces orthogo-
nality—eliminating first-stage over-fit bias—but retains first-stage variance, yielding more
reliable inference at the cost of precision.

Importantly, while plug-in and DML-IV estimators yield nearly identical first-stage bias,
variance, and MSE (Table S1), the cross-fitting and Neyman orthogonalization in DML-IV
remove over-fitting bias at the cost of propagating genuine first-stage variability into the
second stage.? As a result, DML-IV standard errors are modestly larger, reflecting honest

uncertainty from the first-stage noise rather than under-estimating variability.

2 Across learners, Figure S1 shows the familiar under- vs. over-fit patterns in the actual-predicted scatter
plots (points colored by residual). These diagnostics confirm that DML-IV indeed corrects bias via cross-
fitting and orthogonal moments.



2.3 Causal Estimates Across Methods

Table 2 summarizes estimated causal effects of FV intake on BP using OLS, conventional
TSLS 1V, and plug-in ML-IV approaches. The OLS model yields a small effect (-0.45
mmHg per 100 g FV/day), likely biased by confounding and reverse causality, whereas
TSLS produces a much larger estimate (-3.32 mmHg), in line with clinical evidence.
Plug-in ML-IV estimators replace the linear first stage with flexible learners (Ridge,
Lasso, ElasticNet, RandomForest, XGBoost, SVR), using the same hyperparameter tuning as
DML-IV. Their point estimates closely mirror TSLS, and their SEs are somewhat smaller for
nonlinear methods; however, because they do not employ sample splitting or orthogonality,

these SEs understate true uncertainty.

Table 2: Comparison of Estimation Approaches for the Effect of FV Intake on Blood Pressure

Estimator Effect Size SE R?

OLS —0.446™* 0.085 0.134
TSLS IV —3.321** 0.398 0.135
Plug-in ML-IV (Linear) —3.239" 0.398 0.135
Plug-in ML-IV (Ridge) —3.325" 0.398 0.135
Plug-in ML-IV (Lasso) —3.326™ 0.403 0.135
Plug-in ML-IV (ElasticNet) —3.329™ 0.401 0.135
Plug-in ML-IV (RandomForest) —2.496™** 0.284 0.136
Plug-in ML-IV (XGBoost) —3.566™** 0.341 0.136
Plug-in ML-IV (SVR_RBF) —3.337+** 0.357 0.136

Note: Effect sizes represent estimated causal coefficients (7) from each method. Asterisks denote statistical

*

significance: ***p < 0.01, **p < 0.05, *p < 0.1. Plug-in ML-IV estimates use the same regularization and

hyperparameter tuning as DML-IV, but do not apply sample splitting or orthogonalization. These results
serve as a direct benchmark for the DML-IV estimators presented in the next section.

To assess estimator-induced variability, each DML-IV learner is run with K = 5 cross-
fitting folds over 20 replications. Figure 1 shows the empirical sampling distributions of 7
(left) and their robust SEs (right) across learners.® All learners agree on a negative causal
effect, with median 7 ranging from —1.51lmmHg (SVR-RBF) to —2.0lmmHg (XGBoost).
Penalized linears (Ridge, Lasso, ElasticNet) exhibit very tight, almost delta-like violins,

3These are empirical distributions across replications, not bootstrap intervals. I report the median of the
20 treatment-effect estimates to reduce sensitivity to skewness and outliers, and the mean of the 20 analytic
standard errors because the average standard error aligns with the usual variance estimator used to construct
confidence intervals. For comparison, the means of the causal-effect estimates range from —1.57mmHg (Lasso)
to —2.03mmHg (XGBoost).



reflecting stable convex objectives, whereas RandomForest, XGBoost and SVR show wider,

sometimes skewed or multimodal patterns driven by stochastic bagging and tuning.
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Figure 1: Estimated causal effects (7) and standard errors (SE) by full sample using DML-IV.



The empirical sampling distributions of the lower and upper 95% confidence-interval
bounds for each learner are shown in Figure S2, confirming that XGBoost’s CI endpoints
lie centrally and are among the narrowest of all first-stage learners. Notably, the SVR-RBF
learner produces the narrowest 7 and SE violins, outperforming even the penalized linears in
apparent precision. This arises from SVR’s strong RBF shrinkage by underfitting the first-
stage regression. Table S1 shows SVR’s largest negative bias but lowest predictive variance.
Thus, it generates highly stable residuals r;, which cross-fitting then propagates into the
orthogonal moment, yielding tight second-stage estimates.

Among the seven DML-IV learners, XGBoost provides the best bias—variance trade-off in
the first stage—achieving the lowest out-of-fold MSE and near-zero bias (see Table S1)—and
yields second-stage estimates with both high precision and minimal over-shrinkage of causal
effects. Consequently, DML-IV with XGBoost first-stage fits is employed as the headline
model, with the other learners (Ridge/Lasso as simpler checks; SVR/RF as extreme bench-

marks) included in sensitivity analyses to confirm robustness to first-stage choice.
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2.4 Subgroup Analysis

This section captures heterogeneity in the causal effect of FV intake on BP across five
key demographic subgroups. Figure 2 reports, for each subgroup, the empirical sampling
distributions of the DML-IV point estimates 7 (top row) and their robust SEs (bottom row)

over 20 replications.

e Gender: Under linear learners (LinearRegression, Ridge, Lasso, ElasticNet), males show
a more negative point estimate (around —3.5 mmHg) than females (around —2.5 mmHg),
with overlapping 95 % SE intervals. Under nonlinear learners (RandomForest, XGBoost,
SVR-RBF), males cluster near —2.5 mmHg, while females range from approximately —1.8
mmHg to —-3.8 mmHg. For SEs, under nonlinear models, males consistently exhibit smaller

SE violins than females.

e Age: The 30-39 cohort exhibits the largest reduction (around —4.0 mmHg per 100 g/day),
with smaller declines in the 40-49 and 50-59 bands. Precision remains high even in the

smaller age bins, indicating stable inference across these ranges.

e Race/Ethnicity: The “OtherRace” subgroup shows a (slightly) positive causal effect
on average, whereas all other racial groups exhibit a negative FV—BP effect. Mexican-
American and Black respondents have very similar median effects (around -6 to =5 mmHg),
while the White subgroup displays the smallest negative causal effect (around -2 mmHg)

along with the smallest and narrowest SE distributions—consistently across all models.

e Education: The college-graduate subgroup exhibits the most negative causal effect (me-
dian roughly —1.5 to -8 mmHg) but also shows the largest and widest SE distributions.
High-school graduates display a slight positive causal effect with the smallest, narrowest
SE violins. The remaining education subgroups (LessThan9thGrade, LessThan12thGrade,
SomeCollege) cluster between —2 and -4 mmHg for estimated coefficients, with SE distri-

butions centered around 1 to 1.5 mmHg.

e Marital Status: Married individuals exhibit the narrowest SE violins (high precision),
whereas separated respondents display greater dispersion in both 7 and SE (consistent
with smaller subgroup sizes). The median effect for married respondents is approximately
-2 to —2.5 mmHg, while separated and living-with-partner groups lie around —4 to —5
mmHg. The never-married subgroup is closest to zero and occasionally shows positive

estimates.

Overall, these subgroup results demonstrate that the BP reduction—ranging roughly
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from —2 to =7 mmHg per 100 g/day of FV intake—is both statistically significant and con-

sistent across diverse demographic strata.

2.5 Robustness Checks

Weak-Instrument Diagnostics. Using XGBoost as the first-stage learner, the average
first-stage F-statistics across 20 cross-fits are Fl, _hh_income_percap = 132.0, Fbirth,origm =496.9,
and Finst,lninc,birth,origin = 46.0 (see Table S2), all well above the conventional threshold of

10 and confirming instrument strength.

Headline Estimate Stability. Over 20 replications, XGBoost-based DML-IV yields an
average treatment effect 7 = —2.03mmHg (average SE=0.49mmHg; Table S2), with a 95%
empirical violin coverage of approximately [—2.40, —1.60] (see Figure 1). This confirms that

the main result is both precise and robust to first-stage variation.

First-Stage Learner Sensitivity. [ compute 7 using simpler learners (Ridge, Lasso, Elas-
ticNet) and extreme benchmarks (SVR, Random Forest). Not only does the XGBoost—based
DML-IV point estimate lie well within the 95% empirical sampling distributions of the
causal-effect estimates, but its lower and upper 95% confidence-interval bounds are also
centrally located and among the narrowest across models (see Figure S2). This demon-
strates robustness of both point estimates and their precision—i.e., the width of the CI

endpoints—to first-stage model choice.

Across all those checks, substantive finding—a negative causal effect of F'V intake on BP

of roughly 2.03mmHg per 100g/day—remains fully robust.

3 Discussion

3.1 Data

Following (25), this study uses harmonized data from NHANES, covering 1989-2018. NHANES
is a nationally representative survey that collects detailed demographic, dietary, laboratory,
and clinical information from the U.S. civilian noninstitutionalized population. Several pre-
processing steps were implemented to prepare the dataset for causal estimation. Variables
with over 50% missingness or pairwise correlation above 0.7 were excluded. Remaining
missing values were listwise deleted. Extreme values on key variables were removed based

on Z-score thresholds. The causal variable—fruit and vegetable (FV) intake—is measured
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in daily grams, aggregated across dietary recalls. The outcome—blood pressure (BP)—is
computed as the sum of systolic and diastolic measurements. Highly correlated or redun-
dant component variables (e.g., separate systolic readings or subcategories of produce) were
excluded to improve model stability. The final dataset includes 31,176 individuals and 74
harmonized variables.

Per-capita income was computed as the natural logarithm of household income divided
by household size, i.e., log(HH income/HH size). This transformation generates some neg-
ative values for large households with low incomes. No additional winsorization or clipping
was applied. All ML models use standardized inputs for regularization, comparability, and
numerical stability. However, all second-stage outcome regressions use original (unscaled)
data to preserve interpretability.* All data preparation, exploratory analysis, and modeling
were conducted in Python. Full documentation and reproducible code are available upon

request.

3.2 Identification and Estimation

Estimating the causal effect of FV intake D; on BP Y; from observational NHANES data
requires addressing three principal challenges: (i) endogeneity due to unobserved health
preferences or reverse causation, (ii) potentially weak instruments in a high-dimensional
covariate space, and (iii) valid inference when the first-stage relationship is estimated by
flexible ML methods. I outline a sequence of four estimators—OLS, TSLS, plug-in ML-IV,
and DML-IV—that build in turn toward a robust, high-dimensional causal estimate.

A naive OLS regression of BP on FV intake and controls W; takes the form
Y; = 7D; + Wiy + &,
fors = (DT My D)™ DT My Y,
My = I —-WW W)"'wT,

If E[D;¢;] # 0, 7oLs is biased by endogeneity.

To purge D; of endogeneity, I instrument it with a vector

Z; = [birth,origin, In(hh_income _percap), birth_origin x ln(hh,income,percap)},

4Using non-scaled raw data in ML models may bias results due to the influence of large-scale features or
outliers. Even scale-invariant models like trees can extract misleading signals. Scaling also improves regu-
larization, training efficiency, and feature comparability, particularly for linear, distance-based, or gradient-
based models.
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obtaining

frss = (DTPFD)Y'DTPLY, Py = 2(Z272)7'Z".

TSLS removes first-stage bias under valid-IV assumptions, but (a) finite-sample weak-IV
bias can arise when instruments explain little of D; (14, 15), (b) linear first-stage fits may
miss nonlinearities, and (c¢) reusing the same sample in both stages can understate standard
errors when instruments are many or weak (16, 17).

A natural extension is to replace the linear first stage with a flexible ML predictor
GqW;, Z;) =~ E[D; | W;, Z;], then estimate

%plug—in = (DTqA)_quY-

[ implement ¢ via penalized regressions (Ridge, Lasso, ElasticNet), ensemble methods (ran-
dom forest, XGBoost), and kernel models (SVR), tuning up hyperparameters. Although
plug-in ML-IV improves first-stage fit, it reuses the same data for ¢ and for outcome regres-
sion, violating TSLS’s orthogonality condition. In practice, this overfitting bias produces
downward-biased SEs and overly narrow confidence intervals (20-22).

To overcome these limitations, I employ DML-IV (23; 24), which combines Neyman-
orthogonal moment conditions with cross-fitting to yield y/n-consistent estimates and valid

SEs even when first stages are high-dimensional ML models. Define nuisance functions
W) ~E[Z | W), m(W)~E[Y | W], §(W,2)~E[D|W,2],

each estimated by ML on K — 1 folds and then evaluated in the held-out fold (cross-fitting).

The Neyman-orthogonal score for 7 is

and the DML-IV estimate Tpumr,—1v solves
LN~y (5 <(R) 3, (K) (k)
EZ%’(TDML—W;W ym: 0 q ) = 0,
i=1

with each #0-%) m (=% §(=*) trained on the other K — 1 folds. Under standard regularity
and rate conditions, v/n(fpyL_1v — 7) 4N (0,0?), and o? is estimated from the empirical
variance of ;(7).

All models—OLS, TSLS, plug-in ML-IV, and DML-IV—use the same set of observed con-

14



trols W; (demographics, BMI, cholesterol, other dietary intakes) and the same instruments
Z;. For DML-IV, I set K = 5 cross-fitting folds, repeat each procedure over 20 random
splits to assess stability, and report the average point estimate 7 = % Ziil 7(®) and its aver-
age analytic SE SE = % 20, 6® /\/n. First-stage performance (bias/variance/MSE) and
conventional weak-IV diagnostics (mean F-statistics) are summarized in Tables S1 and S2.

This estimator sequence—OLS — TSLS — plug-in ML-IV — DML-IV—makes clear
why DML-IV is the next logical step: it retains TSLS’s bias correction, allows flexible
nonparametric first stages, and preserves valid inference in high-dimensional, ML-driven

settings.

3.3 Inference and Uncertainty

For OLS, TSLS, and plug-in ML-IV models, heteroskedasticity-consistent SEs are calculated
using the Eicker-Huber—White (HCO) correction. These estimators, however, assume that
the right-hand side variables—including predicted instruments—are exogenous to the regres-
sion error, an assumption that is violated when the same data are used for both training and
estimation.

DML-IV addresses this issue by leveraging out-of-sample predictions and Neyman-orthogonal

moments. Define the orthogonal score for each observation:
Vi(Ti7,m, q) = (Z; — #(W)) (Vs — 7D; — i(Ws) + 7 G(W;, Z3)).

I split the data into K folds, train the nuisance estimators {7, m, ¢} on K — 1 folds, and
evaluate ¢; on the held-out fold. The DML-IV estimate Tpyp,_1v solves

I~ .
o ; Ui (Fom—1v) = 0.

The asymptotic variance of Tpyr,_1v is estimated by

~92 1 & A 2
o :ﬁz¢i(TDML—IV) )
i=1

and I construct 95% confidence intervals as

~

NG

For each ML model, I repeat the entire DML-IV procedure over 20 random replications

7A_DMLfIV + 1.96
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to account for randomness due to sample splitting. I then report the average point estimate
T =5 520 #®) and the average SE SE = = 20 .6® /\/n (see Table S2 for the XGBoost
results). Final confidence intervals use the normal approximation above.

This approach yields statistically valid inference while preserving flexibility in first-stage
modeling, providing a robust alternative to plug-in estimators that tend to understate uncer-
tainty. Importantly, the increased SEs under DML-IV are not a shortcoming but a feature:
they faithfully convey uncertainty arising from a weak or noisy first stage (see Table S1 for
first-stage bias/variance/MSE and Table S2 for XGBoost diagnostics). In contrast, plug-
in approaches underestimate variability by reusing in-sample fits, leading to overconfident
inference. Note that further gains in precision could be achieved through more extensive
regularization tuning for linear first-stage models or more thorough hyperparameter opti-
mization for nonlinear learners, which would improve first-stage prediction and thus tighten
second-stage estimates. Lastly, while SVR’s tight confidence bands may look appealing, they
reflect a classic bias—variance trade-off—its aggressive RBF regularization reduces first-stage
noise (and thus second-stage variance) at the cost of increased bias in predicting FV intake

(see Figure S1).

4 Conclusion

Leveraging three decades of harmonized NHANES data and a state-of-the-art DML-IV es-
timator, I identify a robust causal effect of F'V intake on BP. The headline XGBoost-based
DML-IV model estimates that an additional 100 g/day of FV consumption lowers the sum
of systolic and diastolic BP by approximately 2.03 mmHg (SE = 0.49), consistent across
penalized linear, tree-based, and kernel-based first-stage learners and across demographic
subgroups (age, education, gender, race/ethnicity, and marital status). Weak-instrument di-
agnostics (mean F ; 10) and first-stage bias—variance checks (Tables S1-S2, Figures S1-52)
confirm instrument strength and estimator validity.

These results strengthen current dietary guidelines by quantifying the population-level
antihypertensive benefit of produce consumption and demonstrate DML-1V’s capacity to
deliver y/n-consistent, asymptotically normal causal estimates with honest SEs in high-
dimensional settings. Unlike OLS, TSLS, or naive ML-IV, DML-IV corrects for endogeneity;,
overfitting, and weak-IV bias while accommodating flexible, data-driven first stages.

In sum, this study provides rigorous, ML-based causal evidence that modest increases in
FV consumption yield meaningful reductions in BP, offering a scalable public-health strategy
for hypertension prevention and illustrating the practical utility of DML-IV for credible

inference in complex observational data.
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Supplementary Materials

Table S1: First-stage prediction diagnostics: bias, variance, and MSE for each DML-IV
first-stage learner.

Model Bias Variance MSE
LinearRegression 0.000018 0.1509 1.9362
RidgeCV 0.000018 0.1505 1.9363
Lasso 0.000016 0.1480 1.9363
ElasticNet 0.000015 0.1486 1.9363
RandomForest —0.00049 0.1672 1.8959
XGBoost 0.000014 0.1596 1.8921
SVR-RBF —0.1825 0.1679 1.9511

Notes: Bias is the mean prediction error, %Ei(q}- — ¢q;), over 20 replications with 5-fold cross-fitting.

Variance is Var(¢;), and MSE is 1 3~ .(g; — ¢;)*. Negative bias indicates systematic under-prediction of FV

intake.

Table S2: XGBoost first-stage F-statistics and average DML-IV estimates.
Instrument F 7 (mmHg) SE (mmHg)
In_hh_income_percap 132.0 —2.03 0.49
birth_origin 496.9
inst_Ininc_birth_origin 46.0

Notes: F is the mean first-stage F-statistic for each instrument across 20 cross-fitting replications using
XGBoost. 7 and SE are the average treatment effect estimate and its standard error (identical for each

instrument, shown on the first line). Blank cells indicate repetition of the same 7 and SE.
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Figure S1: First-stage actual vs. predicted fruit & vegetable intake (fv) for each DML-IV learner. Points are colored by
residual (predicted minus actual) on a diverging “coolwarm” scale, and the red line is the OLS fit to highlight systematic bias

or shrinkage.
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Figure S2: Distributions of the lower (left) and upper (right) 95% confidence-interval bounds for the DML-IV estimate 7, across
20 replications, by first-stage learner. Each violin shows the empirical sampling distribution of the CI endpoints; XGBoost lies
centrally, confirming both precision and robustness relative to simpler (Ridge, Lasso, ElasticNet) and “extreme” (SVR, RF)
learners.
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