
Debiased Machine Learned Identification for

Causal Inference in High-Dimensional Settings

with Unobserved Confounders

Tamer Çetin∗
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Abstract

This paper introduces a robust, end-to-end double/debiased Machine-Learned Instru-

mental Variables (DML-IV) estimator that integrates nonparametric, fully data-driven ML

methods with the classical IV framework to deliver transparent and reproducible causal

inference in high-dimensional settings with unobserved confounders. Beyond establishing

the identification and theoretical guarantees—Neyman orthogonality, double-robustness,
√
n-consistency, asymptotic normality, and attainment of the semiparametric efficiency

bound under standard completeness and regularity conditions—the paper provides a com-

plete, full-stack ML engineering pipeline: from cross-fitting, regularization, and hyper-

parameter tuning, through fully-data-driven, nonparametric feature-importance–guided

dimensionality reduction and best-model selection from a rich library of learners, to bias-

corrected moment construction and final statistical inference. Monte Carlo experiments

and an empirical application estimating the return to education corroborate both the

theoretical properties and the practical performance of the proposed estimator.

1 Introduction

Causal inference often relies on instrumental variables (IV) to address endogeneity arising

from unobserved confounders. Traditional IV methods exploit instruments correlated with

endogenous regressors but uncorrelated with structural errors to isolate exogenous variation

and identify causal effects (Angrist and Kruger, 1991; Angrist and Imbens, 1994; Angrist,

Imbens and Rubin, 1996; Heckman and Vytlacil , 2005; Horowitz, 2011; Imbens and Rubin,
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2015). However, weak instruments can induce bias and invalidate standard asymptotic results

(Staiger and Stock, 1997; Andrews and Stock, 2005). Nonparametric IV techniques offer greater

flexibility by relaxing functional form assumptions (Newey and Powell, 2003; Horowitz and

Lee, 2007), yet they remain underutilized due to computational and interpretational challenges

(Chen and Pouzo, 2012; Darolles et al., 2011).

The rise of ML methods has led to new IV strategies that reframe both the prediction

of the endogenous regressor and the construction of instruments and controls as supervised-

learning tasks in the first stage. (Belloni et al., 2012; Chen et al., 2022; Hartford et al., 2017;

Mullainathan and Spiess, 2017; Sun, Cui, and Tchetgen, 2022). These ML-based methods

exploit ML algorithms’ ability to handle high dimensionality1 and nonlinear relationships, po-

tentially improving causal identification beyond traditional parametric frameworks. Within

this literature, linear ML models (Lasso, Ridge, Elastic Net) and nonlinear learners (Random

Forests, boosting, neural networks) have been employed to stabilize first stages and capture

complex patterns (Tibshirani, 1996; Belloni and Chernozhukov, 2013; Hoerl and Kennard, 1970;

Hansen and Kozbur, 2014; Zou and Hastie, 2005; Breiman, 2001; Friedman, 2001; Farrell et

al., 2021; Chernozhukov et al., 2021; Athey and Imbens, 2019; Wager and Athey, 2018). Fi-

nally, DML combines sample splitting and cross-fitting to mitigate overfitting while preserving
√
n-consistency and asymptotic normality (Chernozhukov et al., 2018).

Despite these developments, existing ML–IV approaches often fall short of a fully debi-

ased and fully data-driven solution. Many rely on simple plug-in or split-sample estimators

without integrating robust regularization, feature-importance–based dimension reduction, and

automated model selection into a Neyman-orthogonal score with explicit bias-correction. In

the absence of a fully data–driven, nonparametric double/debiased ML–IV approach, reusing

the same sample across both stages can induce first-stage overfitting and bias (Wager and

Athey, 2018; Chernozhukov, Newey, and Singh, 2022; Chernozhukov et al., 2022). For instance,

Chen et al. (2021) implement a split-sample ML estimator but neither augment the moment

condition with a bias-correction term nor verify the Gateaux-derivative condition. Similarly,

1In this paper, “high-dimensional” refers solely to the first-stage prediction problem (a supervised ML task);
the second-stage IV regression remains low-dimensional. From a modeling perspective, the first stage is treated
as fully nonparametric—every conditional expectation (e.g. E[Di | Zi,Wi], E[Yi | Wi]) is estimated by a “black-
box” ML learner. In the second stage, however, I impose a low-dimensional linear index for Di (and for the
low-dimensional subset Wi,ld), while the remaining variation in Wi is absorbed nonparametrically into m(Wi).
Thus the second stage is semiparametric.
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Belloni et al. (2012) employ Lasso/post-Lasso to approximate optimal instruments in a linear

IV model with many instruments but only low-dimensional controls, yet they fit a single first

stage and apply two-stage least squares without orthogonal residualization or cross-fitting, and

do not establish double robustness or semiparametric efficiency in high-dimensional or nonlinear

contexts. Similarly, Okui et al. (2012) study a semiparametric IV model and propose doubly-

robust GMM estimators that require the specification of finite-dimensional working models for

both the outcome and treatment equations, showing consistency whenever either of these two

working models is correctly specified. However, they assume that both the control and instru-

ment dimensions remain fixed as n→ ∞ and do not employ modern ML methods to estimate

those nuisance functions, whereas the present approach allows the number of controls (and

instruments) to grow with the sample size and leverages fully data-driven ML estimators under

Neyman orthogonality. Moreover, in most prior work a single ML algorithm is chosen in an

ad hoc manner for the first-stage prediction. In addition to the aforementioned papers, Gold,

Lederer, and Tao (2020) employs Lasso in the first-stage prediction.

By contrast, this paper works in the many-controls/instruments regime under an approximate-

sparsity assumption and employs all possible linear and nonlinear ML algorithms to estimate

the nuisance regressions. It constructs an orthogonal score that remains
√
n-consistent even

when using high-dimensional ML estimators and delivers valid, uniformly honest confidence

intervals for the IV parameter in this high-dimensional setting. In this way, it extends the

doubly-robust IV approach in the existing literature beyond the finite-dimensional, parametric

working-model case into the high-dimensional, ML-driven world. Moroever, the proposed esti-

mator adopts a fully data–driven model selection strategy that fits a rich library of both linear

and nonlinear ML algorithms and methods to predict the endogenous regressor, evaluates their

out-of-sample performance via cross-fitting, and selects the algorithm that delivers the lowest

first-stage prediction error. This adaptive procedure flexibly captures the complexity of the

data, strengthens the instrument, and underpins improved bias–variance trade-offs.

Thus, the paper fills these gaps by proposing a complete, end-to-end DML-IV estimator

that (i) accommodates high-dimensional and potentially nonlinear instruments and controls;

(ii) embeds cross-fitting, systematic hyperparameter tuning for regularization, fully data-driven

feature-importance–based dimensionality reduction, and model selection from a rich learner li-

brary into a Neyman-orthogonal estimating equation; and (iii) rigorously establishes double

robustness and semiparametric efficiency. In particular, the estimator implements an adaptive
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construction of optimal instruments—namely, the conditional expectation of the endogenous

regressor given instruments and controls—by leveraging both linear and nonlinear ML models

to combine high-dimensional controls and candidate instruments, thereby enhancing predictive

accuracy and instrument strength. By integrating cutting-edge ML techniques into a single

orthogonal score, the DML-IV approach overcomes limitations of conventional TSLS-IV and

plug-in ML-IV methods under unobserved confounding. The resulting estimator remains con-

sistent if either the treatment or outcome nuisance model is correctly specified and achieves

the semiparametric efficiency bound—preserving
√
n-consistency and optimal variance even

under slow ML convergence rates. Monte Carlo simulations and an empirical application to

estimating the return to education (Angrist and Kruger, 1991) corroborate these theoretical

findings, demonstrating lower bias, reduced variance, and improved mean squared error rel-

ative to conventional TSLS-IV and plug-in ML-IV estimators, with nominal coverage across

diverse settings. Under standard regularity and completeness conditions, the proposed DML-

IV estimator is
√
n-consistent, asymptotically normal, and semiparametrically efficient, thereby

delivering reliable inference in complex, high-dimensional applications.

The remainder of the paper is structured as follows. Section 2 presents the structural model,

identification strategy, and integration of ML methods. Section 3 delivers the main theoretical

results, including proofs of consistency, asymptotic normality, and efficiency. Section 4 reports

Monte Carlo simulation outcomes. Section 5 provides the empirical application to returns to

education. Section 6 concludes with discussion and directions for future research. Notation,

proofs, and additional empirical results are gathered in the online supplementary material.

2 Model and Identification Strategy

2.1 Structural Machine-Learned IV Model and Motivation

The model is given by

Yi = τ Di + β⊤Wi,ld +m(Wi) + ϕi, (1)

Di = f
(
Zi, Wi;λ, θ

)
+ γ Ai + νi, (2)
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where Wi = (Wi,ld,Wi,hd), β
⊤Wi,ld is the low-dimensional linear component, and

m(Wi) = E
[
Yi − τ Di − β⊤Wi,ld

∣∣ Wi

]
,

which nonparametrically absorbs the remaining high-dimensional controls.2 Yi denotes the

outcome, Di the endogenous treatment, Zi the instruments, and Ai unobserved confounders.3

The functions f(·;λ, θ) incorporate adaptive ML techniques to predict Di. The remaining

structural shocks satisfy

E[ϕi | Zi,Wi] = 0, E[νi | Zi,Wi] = 0.

Although at first glance the decomposition

Yi = τ Di + β⊤Wi,ld +m(Wi) + ϕi, Di = f(Zi,Wi;λ, θ) + γ Ai + νi

may seem nonstandard, it in fact nests virtually every IV- or control-function model in the

literature. For example, the classical linear IV model is recovered by takingWi,ld = Wi andm ≡
0. Nonparametric IV (NPIV) arises by setting β = 0 and Wi,ld = ∅, so that all covariates enter

through the nonparametric remainder m(Wi) (Newey, 1990; Newey and Powell, 2003; Darolles

et al., 2011). Control-function approaches, which posit a finite-dimensional function h(Ai), are

also contained here, since once Ai is measurable with respect to Wi, any finite-dimensional

h(Ai) can be absorbed into m(Wi). Similarly, latent-factor confounder models—where Ai ∈r

and E[Ai | Wi] is linear in Wi—fit within this framework by writing

δ⊤Ai = δ⊤E[Ai | Wi] +
(
δ⊤Ai − δ⊤E[Ai | Wi]

)
,

absorbing the first term into m(Wi) and treating the second as an orthogonal shock. Thus,

2Because all available covariates are used to predict Di by ML in the first stage, here Wi ≡ Wi,hd is the full
(high-dimensional) covariate vector.

3Although identification ultimately rests on the single restriction E
[
γAi + ϕi | Zi,Wi

]
= 0, the model

distinguishes Ai (the latent factor driving both treatment and outcome) from ϕi (the idiosyncratic shock to Y )
and νi (the idiosyncratic shock to D) for two purposes: (a) to highlight the source of endogeneity—Ai induces
correlation between Di and the outcome error, whereas ϕi affects only the outcome equation; and (b) to clarify
the double-robustness argument by separating a “treatment-selection” error, γAi + νi, from a “pure outcome”
error, ϕi, each of which is orthogonal to (Zi,Wi) under different maintained assumptions.
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by choosing Wi,ld to be the small set of covariates one wishes to interpret linearly (e.g. age

or policy dummies) and allowing all remaining controls to enter via m(Wi), one obtains a

unified semiparametric specification that preserves interpretability where desired and robustness

everywhere else.

I do not assume any finite-dimensional parametric form for

q(Zi,Wi) = E[Di | Zi,Wi] or r(Wi) = E[Di | Wi], µ(Wi) = E[Yi | Wi].

Instead, these conditional expectations are estimated by fully data-driven, nonparametric

ML learners (including Lasso, random forests, boosting, neural nets, etc.). In that sense, the

entire first stage is nonparametric.

Once I have q̂(Zi,Wi) and m̂(Wi) = µ̂(Wi)− τ r̂(Wi), I solve the classical moment equation

E
[
(Zi − π(Wi))

(
Yi − τDi −m(Wi) + τ q(Zi,Wi)

)]
= 0. (3)

Here only a finite-dimensional subset of controls Wi,ld enters linearly (through β⊤Wi,ld),

and τ itself is a single scalar. The rest of Wi enters flexibly into m(Wi), but that flexibility is

absorbed in a single nonparametric leftover. Consequently, the second stage is semiparamet-

ric—it mixes a low-dimensional linear index (τ Di + β⊤Wi,ld) with a nonparametric nuisance

m(Wi). In short, this paper is nonparametric when building the first-stage predictions of Di,

and semiparametric when forming the final moment condition for τ .

To identify τ , I impose the usual instrumental-variables conditions. First, instrument exo-

geneity requires that, conditional on the full control vectorWi, the instruments be uncorrelated

with both the unobserved confounders and the structural error:

E[ZiAi | Wi] = 0 and E[Ziϕi | Wi] = 0.

Second, instrument relevance demands that the instruments retain predictive power for the

endogenous treatment after conditioning on the controls,

Cov
(
Di, Zi | Wi

)
̸= 0.

Finally, control exogeneity stipulates that the confounders and the outcome error have
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zero conditional mean given Wi, and that the confounders themselves are mean-zero in the

population:

E[Ai | Wi] = 0, E[ϕi | Wi] = 0, E[Ai] = 0.

Because all of Wi enters either linearly (via Wi,ld) or nonparametrically (via m(Wi)), the

condition E[ZiAi | Wi] = 0 is a genuine conditional exogeneity assumption.

A central element of the proposed estimator is the optimal instrument function

w(Zi,Wi) = E
[
Di | Zi,Wi

]
,

estimated by ŵ(Zi,Wi) and used to form the Neyman-orthogonal moment condition via cross-

fitting, thereby ensuring robustness to small perturbations in the nuisance estimates.

2.2 Adaptive Neyman Orthogonality and Identification of τ

The paper frames estimation of the causal effect τ via a Neyman–orthogonal moment that

accommodates flexible, data-driven ML for the nuisance components. I begin by introducing

a hierarchy of parameters. The primary object of interest is the scalar parameter τ , which

measures the causal effect. The secondary nuisance functions are collected into

η =
(
π, q, m

)
,

where

π(Wi) = E[Zi |Wi], q(Zi,Wi) = E[Di |Zi,Wi], m(Wi) = E[Yi − τDi − β⊤Wi,ld | Wi]. (4)

Because m(Wi) = E[Yi − τDi | Wi] depends on τ , I re-express it in terms of two regressions

that do not require prior knowledge of τ . Define

µ(Wi) = E[Yi | Wi], r(Wi) = E[Di | Wi]. (5)

It follows that

m(Wi) = E
[
Yi − τ Di | Wi

]
= µ(Wi) − τ r(Wi),
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so in practice I cross-fit one ML regression µ̂ of Yi onWi and one r̂ ofDi onWi, both independent

of τ , and then set

m̂(Wi) = µ̂(Wi) − τ r̂(Wi).

This construction avoids circularity in estimating m.

Tertiary parameters φ ∈ Φ govern aspects of the fully data-driven nonparametric ML pro-

cedures such as regularization, hyperparameter tuning, feature reduction, and model selection.

Here φ = (λ, θ) collects all of the first-stage adaptive ML techniques , so that the Gateaux

derivative
∂

∂φ
E[ψi(τ, η, φ)]

∣∣∣∣
(η0,φ0)

= 0 (see Appendix Appendix C),

fully accounts for the out-of-sample selection of λ̂, θ̂. In other words, the φ–orthogonality

condition automatically “knows about” the entire tuning procedure.

Because f may be drawn from any ML class—penalized linear models, trees, boosting, or

deep nets—the theory never imposes a parametric form. It suffices to assume the following

convergence rates for all four ML nuisances:

∥π̂ − π∥L2 , ∥q̂ − q∥L2 , ∥µ̂− µ∥L2 , ∥r̂ − r∥L2 = op(n
−1/4).

Under cross-fitting, these rates guarantee that first-order perturbations in either η = (π, q,m)

or in the hyperparameter vector φ = (λ, θ) enter the estimating equation only at order op(n
−1/2).

In particular, the Gateaux derivatives

∂

∂η
E[ψi(τ, η, φ)]

∣∣∣∣
(η0,φ0)

=
∂

∂φ
E[ψi(τ, η, φ)]

∣∣∣∣
(η0,φ0)

= 0 (see Appendix Appendix C),

and the mixed second derivative remains bounded (see Appendix Appendix C). Consequently

the resulting DML–IV estimator is
√
n-consistent, asymptotically normal, and semiparametri-

cally efficient even when machine-learning convergence is slow.

In addition, following (Belloni et al., 2012; Hansen, Hausman, and Newey, 2008; Newey,

1990), the optimal instrument function is defined as

w(Zi,Wi) = E
[
Di | Zi,Wi

]
, (6)
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which plays a key role in achieving semiparametric efficiency. This function coincides with the

first-stage conditional expectation, that is,

q(Zi,Wi) = E
[
Di | Zi,Wi

]
= w(Zi,Wi).

In practice, this function is estimated from the data—denoted by ŵ(Zi,Wi)—and is used

to form the plug-in prediction D̂i in the first stage.

Under the conditional moment restriction E[ϕi | Zi,Wi] = 0 in the structural model, it is a

standard result that the efficient instrument in the linear IV setting is

w∗(Zi,Wi) = E[Di | Zi,Wi].

This follows from Chamberlain’s semiparametric efficiency analysis (Chamberlain, 1987,

Theorem 1) and its extension to series approximations by Newey (1990). In high-dimensional

settings, Belloni et al. (2012) further show that Lasso-based approximations to

E[Di | Zi,Wi]

retain
√
n-consistency and asymptotic normality. In this framework I therefore implement the

optimal instrument by targeting

q(Zi,Wi) = E[Di | Zi,Wi]

in the orthogonal score (7).

Based on these definitions, the classical orthogonal moment condition is specified as

ψi

(
τ, η, φ

)
=
(
Zi − π(Wi)

) [
Yi − τ Di −m(Wi) + τ q(Zi,Wi)

]
, (7)

where the term (Zi−π(Wi)) represents the instrument residual, thereby isolating the exogenous

variation in Zi, and the bracketed term isolates τ in expectation.

Here q(Z,W ) is chosen to satisfy the conditional moment

E
[
(Z − π(W )) (D − q(Z,W )) | W

]
= 0.
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By iterated expectations one then shows

E
[
(Z−π(W )) q(Z,W )

]
= E

[
(Z−π(W ))D

]
, E

[
(Z−π(W ))(Y−m(W ))

]
= τ E

[
(Z−π(W ))D

]
.

Hence the two τ–terms cancel exactly and

E
[
(Z − π(W ))(Y − τD −m(W ) + τq(Z,W ))

]
= 0.

This shows that the extra τ q–term is precisely the bias–correction needed to ensure the

moment is zero.

Under the maintained IV assumptions,

E
[
ψi(τ, η, φ)

]
= 0.

The optimized ML parameters φ enter the framework indirectly through the nuisance func-

tions, since the functions π, q, and m are estimated using ML models that involve hyperparam-

eter tuning and feature selection to address high-dimensionality and potential overfitting.

The function

f(Zi,Wi;λ, θ)

from (2) is nothing but a fully data-driven estimate of the conditional expectation

q(Zi,Wi) = E[Di | Zi,Wi].

I distinguish between two sets of hyperparameters: λ, which includes all regularization

penalties (e.g., the Lasso penalty, ridge shrinkage, or penalties on tree depth), and θ, which

encompasses all other tuning choices (e.g., learning rate, number of trees, network architecture)

as well as any feature-reduction or model-selection decisions made by the fully data-driven ML

pipeline.

Within each cross-fitting fold I select λ̂, θ̂ by out-of-sample validation and then set

q̂(Zi,Wi) ≡ f
(
Zi,Wi; λ̂, θ̂

)
≈ E[Di | Zi,Wi].
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Accordingly, in the orthogonal score

ψi(τ, η, φ) =
(
Zi − π(Wi)

)[
Yi − τDi −m(Wi) + τ q(Zi,Wi)

]
,

the nuisance function q(Zi,Wi) is implemented by the first-stage predictor f(·; λ̂, θ̂). This makes

explicit both the role of f in approximating the optimal instrument and the distinction between

tertiary parameters λ and θ.

Neyman orthogonality is an intrinsic property of ψi(τ, η, φ), namely that

∂

∂η
E
[
ψi(τ, η, φ)

]∣∣∣∣
(η0,φ0)

= 0,
∂

∂φ
E
[
ψi(τ, η, φ)

]∣∣∣∣
(η0,φ0)

= 0 (see Appendix Appendix C).

Cross-fitting and related sample-splitting schemes are then employed as estimation strategies

to ensure that the sample analog of this property holds up to op(n
−1/2), by orthogonalizing the

first-stage estimation errors from the second-stage moment evaluation. Moreover, any potential

second-order interactions between errors in η and φ are controlled by requiring that the mixed

partial derivative

∂2

∂φ ∂η
E
[
ψi(τ, η, φ)

]∣∣∣∣
(η0,φ0)

remains bounded (see Appendix Appendix C).

Under these regularity conditions, the estimator for τ is
√
n-consistent, asymptotically

normal, and semiparametrically efficient when advanced ML techniques are employed. This

adaptive setting that integrates both the primary nuisance functions and the advanced ML pa-

rameters ensures robustness against overfitting and model misspecification in high-dimensional

settings.

Theorem 1 (Identification of τ). Under the adaptive structural model and given assumptions

above, the causal effect τ is uniquely identified by the orthogonal moment condition

E
[
ψi(τ, η, φ) | Wi

]
= 0,

where ψi is defined in (7).
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2.3 Estimation Strategy

2.3.1 Cross-Fitting with Hierarchical Parameters η, φ

To obtain a consistent and robust estimator of τ in the presence of high-dimensional nuisance

parameters and advanced ML techniques, I employ a cross-fitting procedure tailored to the

hierarchical structure of nuisance parameters η and tertiary parameters φ.

First, partition the full sample {1, . . . , n} into K mutually exclusive and collectively exhaus-

tive subsets (folds) I1, . . . , IK of approximately equal size.

For each fold k ∈ {1, . . . , K}, using the data excluding fold k, that is, from the combined

set I−k =
⋃

j ̸=k Ij, estimate the secondary nuisance functions η̂(−k) = (π̂(−k), q̂(−k), m̂(−k)) along

with the corresponding tertiary parameter selections denoted by φ̂(−k). Note that these esti-

mations involve advanced ML methods such as regularization, cross-fitting, model selection,

and sparsity reduction based on feature importance scores from the selected best prediction

algorithms with hyperparameter tuning. For each observation i ∈ Ik, compute predictions

η̂(−k)(Wi) and store the associated hyperparameters φ̂(−k).

Second, for every observation i = 1, . . . , n, assign the estimates η̂i and φ̂i obtained from the

fold where i was held-out, effectively combining the fold-specific predictions into a full-sample

set of nuisance estimates.

Lastly, employ a similar cross-fitting approach to estimate the optimal instrument function

w(Zi,Wi) = E
[
Di | Zi,Wi

]
. For each fold k, compute ŵ(−k)(Zi,Wi) for i ∈ Ik using models

trained on I−k, and aggregate these to obtain ŵ(Zi,Wi) for the whole sample.

This cross-fitting procedure ensures first-order orthogonality because each fold’s nuisance

estimates η̂i and tertiary parameter choices φ̂i are obtained from data not used in evaluating

the moment conditions at observation i; small estimation errors in these nuisance components

do not induce first-order bias in the estimator of τ . Moreover, performing hyperparameter

selection out-of-sample in each fold mitigates overfitting and supports approximate second-

order orthogonality with respect to φ.

For each fold k = 1, . . . , K, on the training set I−k estimate

µ̂(−k)(Wi) ≈ E[Yi | Wi], r̂(−k)(Wi) ≈ E[Di | Wi].
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Then for each held-out i ∈ Ik set

m̂(Wi) = µ̂(−k)(Wi) − τ r̂(−k)(Wi).

By construction no initial value of τ is needed: these m̂ simply enter the orthogonal score

ψi(τ) =
(
Zi − π̂(Wi)

)[
Yi − τDi − m̂(Wi) + τ q̂(Zi,Wi)

]
,

and one shows algebraically that the solution is

τ̂ =

∑n
i=1 q̂(Zi,Wi)Yi∑n
i=1 q̂(Zi,Wi)Di

,

so there is never any circularity in estimating m before τ .

2.3.2 Incorporating Advanced ML Techniques

Following (Chernozhukov, Newey, and Singh, 2022; Sun, Cui, and Tchetgen, 2022), the estima-

tor integrates modern ML methods into the estimation of both secondary nuisance functions

η = (π, q,m) and tertiary parameters φ. Concretely, within each fold k I train a suite of

candidate pipelines (indexed by φ(−k)) on the training set I−k. These pipelines may include

regularized linear methods (e.g. Lasso, Ridge) parameterized by penalty weights λ, and non-

linear learners (e.g. Random Forests, boosting, neural nets) parameterized by hyperparameters

θ (e.g. tree depth, learning rate, network architecture). Feature reduction and model selection

are driven by those regularization and hyperparameter-tuning processes, denoted λ and θ.

After fitting each pipeline on I−k, its out-of-sample prediction error is recorded on the held-

out fold Ik. The pipeline with the lowest validation error (and its associated φ̂(−k)) is selected

as the “best” for that fold.

Once a pipeline is chosen, I refit it on I−k under the selected φ̂(−k) to produce

π̂(−k), q̂(−k), µ̂(−k), r̂(−k),

and hence m̂(−k) = µ̂(−k) − τ r̂(−k). For nonlinear learners, I then compute feature-importance

scores (e.g. variable importance in Random Forests or SHAP values in boosting) and prune

low-importance covariates from {π, q, µ, r}. In linear models, dimensionality is already reduced
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by the ℓ1 (Lasso) or ℓ2 (Ridge) penalty, so no further pruning is required. The result is a refined

set of predictors for each nuisance function.

For each held-out index i ∈ Ik, I set

η̂i =
(
π̂(−k)(Wi), q̂

(−k)(Zi,Wi), m̂
(−k)(Wi)

)
, φ̂i = φ̂(−k).

Because every η̂i and φ̂i is computed on data that excludes the ith observation, the first-

order effect of any regularization bias or hyperparameter choice vanishes from the second-

stage estimating equation. In particular, first-order Neyman orthogonality implies that small

perturbations in η̂ or φ̂ do not bias τ̂ at order n−1/2 (Chernozhukov et al., 2018). Any higher-

order interaction between η and φ estimation errors is op(n
−1/2) under the bounded-Hessian

and rate conditions detailed in Appendix Appendix C.

In summary, each fold k proceeds as follows: (i) fit multiple candidate pipelines—regularized

linear (varying λ) and nonlinear (varying θ)—on I−k, including any feature-importance–driven

pruning or dimensionality-reduction steps as part of model selection; (ii) select the pipeline

with lowest validation error on Ik, recording its hyperparameters, feature-pruning rules, and

any model-selection choices as φ̂(−k); (iii) refit the chosen pipeline on I−k under φ̂(−k) to obtain

π̂(−k), q̂(−k), µ̂(−k), r̂(−k), applying the recorded feature-reduction rules, and compute m̂(−k) =

µ̂(−k) − τ r̂(−k); (iv) for each i ∈ Ik, set η̂i =
(
π̂(−k)(Wi), q̂

(−k)(Zi,Wi), m̂
(−k)(Wi)

)
and φ̂i =

φ̂(−k). Because cross-fitting isolates each η̂i and φ̂i from (Yi, Di, Zi,Wi), any bias introduced by

regularization or hyperparameter selection is orthogonal to the moment condition for τ . As a

result, the DML-IV estimator remains
√
n-consistent and asymptotically normal despite using

complex, high-dimensional ML pipelines for nuisance estimation.

2.4 Optimal Instruments and Regularity Conditions

Optimal instruments are defined as the conditional expectation of the endogenous variable

given both the instruments and the high-dimensional controls. Building on the foundational

work of Amemiya (1974), Chamberlain (1987), and Newey (1990), Belloni et al. (2012) demon-

strated that optimal instruments can be effectively approximated via sparse methods such as

Lasso and post-Lasso. Other studies have contributed alternative strategies. For instance,

Bai and Ng (2009) employed boosting-based instrument selection, Caner (2009) introduced a

Lasso-type GMM estimator, Carrasco (2012) proposed a ridge regression approach to handle
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many instruments, and Gautier and Tsybakov (2011) developed a square-root Lasso method

for high-dimensional IV estimation. In contrast to these approaches, which typically rely on

a single regularization strategy, I extend this framework by integrating a broader array of

ML techniques, including cross-fitting, advanced regularization, hyperparameter tuning, data-

driven feature selection, and the selection of the best prediction model in the first stage from

among all flexible ML algorithms based on a fully data-driven, nonparametric approach, to

approximate w(Zi,Wi) adaptively. This adaptive construction not only preserves the flexibility

of the nonparametric projection but also ensures robustness and semiparametric efficiency in

high-dimensional settings, even when some instruments are weak.

As defined in (6), the optimal instrument function is

w(Zi,Wi) = E
[
Di | Zi,Wi

]
.

This definition is nonparametric, imposing no fixed linear or nonlinear functional form on

the relationship between the instruments Zi and the controls Wi. Instead, w(Zi,Wi) flexibly

characterizes how the endogenous variable Di can be optimally predicted from the combined

information in Zi and Wi using data-driven methods. In effect, w(Zi,Wi) serves as the projec-

tion of Di onto the sigma-algebra generated by (Zi,Wi), thereby minimizing the mean squared

error E[∥Di−w(Zi,Wi)∥2]. This property ensures that w(Zi,Wi) captures the most informative

statistical patterns that predict Di, accommodating both linear and nonlinear relationships as

revealed by the data.

Within the adaptive DML-IV estimator in this paper, the function w(Zi,Wi) underpins the

estimation of nuisance parameters and the construction of efficient instruments. By accurately

summarizing the relationship between Zi, Wi, and Di, w(Zi,Wi) aids in reducing residual

variation when predicting the endogenous variable. In practice, ŵ(Zi,Wi) is estimated using

advanced ML algorithms that adapt to the underlying data structure—capturing linearities,

nonlinearities, and interactions—through regularization, hyperparameter tuning, and cross-

fitting. This adaptive estimation ensures that the final instrument remains robust, efficient,

and orthogonal to the second-stage estimation errors.

In this setting, the optimal instrument w(Zi,Wi) indirectly informs the estimation of nui-
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sance parameters π(Wi), q(Zi,Wi), and m(Wi) through the moment function:

ψi

(
τ, η, φ

)
=
(
Zi − π(Wi)

) [
Yi − τ Di −m(Wi) + τ q(Zi,Wi)

]
.

Stacking this primary moment condition with additional valid restrictions yields a vector of

moment conditions:

Ψn(τ) =
1

n

n∑
i=1


(Zi − π(Wi))(Yi − τDi −m(Wi) + τq(Zi,Wi))

ψ
(2)
i (τ, η, φ)

...

ψ
(J)
i (τ, η, φ)

 = 0. (8)

where subsequent components ψ
(j)
i (τ, η, φ) may incorporate overidentifying restrictions or

additional moments informed by w(Zi,Wi). The accurate estimation of w(Zi,Wi) enhances

the precision and efficiency of these nuisance estimators and, consequently, the IV estimator τ̂ .

Regularity conditions are as follows:

RC1: The covariates Wi, instruments Zi, and outcome Yi are bounded or sub-Gaussian:

∥Wi∥, ∥Zi∥, ∥Yi∥ < C <∞,

and the error terms are exogenous:

E[Ai | Wi] = 0, E[ϕi | Wi] = 0.

This condition controls the variability of the data and ensures that Wi does not introduce

bias via correlation with unobservables, which is critical for the reliability of the projection

w(Zi,Wi) and the stability of the nuisance parameter estimates.

RC2: The instruments Zi possess sufficient predictive power for Di given Wi:

Var
(
E[Di | Zi,Wi]

)
≥ c > 0.

Strong instruments guarantee that the relationship between Zi and Di is informative, en-

abling the optimal instrument w(Zi,Wi) to effectively summarize the variation in Wi that is

relevant for predicting Di, which is key to achieving efficient estimation of τ .
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RC3: The instruments are valid:

E[Zi ϕi] = 0, E[ZiAi] = 0.

Exogeneity of instruments ensures that the projections and moment conditions are not

contaminated by omitted variable bias or correlation with error terms, preserving the integrity

of w(Zi,Wi) and the identification strategy for τ .

RC4: The nuisance functions π(Wi), q(Zi,Wi), and m(Wi) are Lipschitz continuous:

|π(Wi +∆)− π(Wi)| ≤ L∥∆∥,

and similarly for q and m. The optimal instrument function satisfies

E
[
w(Zi,Wi)

2
]
<∞.

Square-integrability ensures that w(Zi,Wi) has finite variance, which is essential for valid

asymptotic inference and for guaranteeing that the estimation process yields stable and reliable

instruments.

RC5: The nuisance estimators π̂, q̂, m̂, and ŵ converge at rates:

∥π̂ − π∥L2 , ∥q̂ − q∥L2 , ∥m̂−m∥L2 , ∥ŵ − w∥L2 = op(n
−1/4).

These convergence rates ensure that the estimation errors for the nuisance functions and

the optimal instrument shrink quickly enough so that their impact on the estimation of τ

diminishes, preserving the efficiency and consistency of the IV estimator. In other words,

this condition ensures that the estimation errors for the nuisance functions and the optimal

instrument diminish sufficiently fast.

RC6: The moment function satisfies first-order orthogonality:

∂

∂η
E
[
ψi(τ, η, φ)

]∣∣∣∣
η=η0, φ=φ0

= 0.
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Additionally, for advanced ML parameters φ, I require

∂

∂φ
E
[
ψi(τ, η, φ)

]∣∣∣∣
η=η0, φ=φ0

≈ 0,

and that the mixed second-order derivative

∂2

∂φ ∂η
E
[
ψi(τ, η, φ)

]∣∣∣∣
η=η0, φ=φ0

is bounded,

thereby controlling the influence of advanced ML parameters on the moment conditions.

First-order orthogonality ensures that small deviations in nuisance parameters do not in-

troduce bias into the estimation of τ .

In (7), the moment function is defined as:

ψi(τ, η, φ) = (Zi − π(Wi))
[
Yi − τDi −m(Wi) + τq(Zi,Wi)

]
.

Let η = (π, q,m) and consider a small perturbation ∆η = (∆π,∆q,∆m). The perturbed

moment function becomes:

ψi(τ, η +∆η) = ψi(τ, η)

−∆π(Wi)ωi

−
(
Zi − π(Wi)

) (
∆m(Wi)− τ ∆q(Zi,Wi)

)
.

(9)

where ωi = Yi − τDi −m(Wi) + τq(Zi,Wi).

By (RC1), Wi, Zi, and Yi are bounded, so ∥ωi∥ is finite. Using (RC5), the perturbations in

nuisance functions satisfy:

∥∆π∥, ∥∆q∥, ∥∆m∥ = op(n
−1/4).

These bounds ensure that the impact of estimation errors in η on ψi diminishes as n→ ∞.

Taking expectations conditional on Wi:

E
[
ψi(τ, η +∆η) | Wi

]
= E

[
ψi(τ, η) | Wi

]
− E

[
∆π(Wi)ωi | Wi

]
− E

[
(Zi − π(Wi))

(
∆m(Wi)− τ ∆q(Zi,Wi)

) ∣∣ Wi

]
.

(10)

18



By (RC6):

E[ψi(τ, η) | Wi] = 0.

By the cross-fitting procedure, ∆π, ∆q, and ∆m are orthogonal to the residual terms ωi

and Zi − π(Wi):

E[∆π(Wi) · ωi | Wi] = 0, E[(Zi − π(Wi)) · (∆m− τ∆q) | Wi] = 0.

Thus:

E[ψi(τ, η +∆η) | Wi] = 0.

Second-order orthogonality ensures that interactions between errors in nuisance parameter

estimation (η) and hyperparameter selection (φ) are asymptotically negligible.

Expanding E[ψi(τ, η, φ)] around (η0, φ0):

E
[
ψi(τ, η0 +∆η, φ0 +∆φ)

]
= E

[
ψi(τ, η0, φ0)

]
+ (∆η)⊤

∂E[ψi]

∂η
+ (∆φ)⊤

∂E[ψi]

∂φ

+ higher-order terms.

(11)

By (RC6), first-order terms vanish:

∂E[ψi]

∂η
= 0,

∂E[ψi]

∂φ
= 0.

By (RC4) and (SO1): ∥∥∥∥∥ ∂2E[ψi]

∂(η, φ)2

∥∥∥∥∥ ≤ C <∞.

By (RC5), the errors in η and φ satisfy:

∥∆η∥ = Op(n
−1/4), ∥∆φ∥ = Op(n

−1/4),

ensuring:

∥∆η∥ · ∥∆φ∥ = op(n
−1/2).

Under (RC1)–(RC6), first-order orthogonality holds, and second-order mixed terms are
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bounded by op(n
−1/2), ensuring Neyman orthogonality and robustness to advanced ML meth-

ods. These conditions ensure that the moment function is robust to small perturbations in both

the nuisance parameters and advanced ML hyperparameters. The nullified first-order deriva-

tives imply that minor errors in estimating η and setting φ do not bias τ̂ , while controlling the

mixed second-order derivatives prevents interactions between errors in η and φ from inducing

substantial bias, thereby safeguarding the estimator’s asymptotic properties.

3 Main Results

3.1 Neyman Orthogonality

Neyman Orthogonality ensures that the estimator is insensitive to small perturbations in the

nuisance parameters, thereby reducing bias and enhancing robustness. This property removes

first-order bias in regression-based parameters, making estimators robust to model misspecifica-

tion (Neyman, 1959, 1979; Belloni et al., 2017; Chang, 2020; Chernozhukov et al., 2018, 2022).

To analyze the robustness of the estimator in the presence of advanced ML parameters, both

first-order and second-order orthogonality results are established with respect to the nuisance

parameters η and φ.

3.1.1 First-Order Orthogonality

Lemma 1 (Gateaux Orthogonality). Let ψi(τ, η, φ) be as in (7). Define for any direction h =

(hπ, hq, hm) the Gateaux derivative

Dη E[ψi(τ, η, φ)]
[
h
]
=

d

dε
E[ψi(τ, η + ε h, φ)]

∣∣∣∣
ε=0

.

Under regularity conditions (RC1–RC6) and the definition of q and m in (2), I have

Dη E[ψi(τ, η0, φ0)]
[
h
]
= 0 for every nuisance-direction h.

This result implies that small perturbations in the nuisance parameters η do not affect

the expected value of the moment function to first order in Lemma 1. Consequently, the mo-

ment condition ψi(τ, η) satisfies Neyman Orthogonality, ensuring robustness of the estimator τ̂
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against first-order estimation errors in the nuisance parameters. This is particularly crucial in

high-dimensional settings, where cross-fitting and regularization techniques mitigate overfitting

and exploit sparsity. Cross-fitting ensures that the data used to estimate nuisance parame-

ters is separate from that used in the moment condition evaluation, which orthogonalizes the

estimation errors.

For the second-order analysis, the following additional assumptions are introduced.

SO1: There exists a constant C > 0 such that for all (η, φ) in a neighborhood of the true

values (η0, φ0), ∥∥∥∥∥∂2E[ψi(τ, η, φ)]

∂(η, φ)2

∥∥∥∥∥ ≤ C.

This assumption, common in semiparametric analysis (e.g., Newey 1990), ensures that the

curvature of the moment function is controlled.

SO2: The estimation errors for the nuisance parameters and the advanced ML parameters

satisfy

∥η̂ − η0∥ = Op(n
−1/4) and ∥φ̂− φ0∥ = Op(n

−1/4),

ensuring that the errors decay sufficiently fast.

SO3: Any higher-order remainder terms in the Taylor expansion of E[ψi(τ, η, φ)] around

(η0, φ0) are op(n
−1/2), so that the second-order expansion captures the dominant behavior of

the remainder.

3.1.2 Second-Order Orthogonality

Lemma 2 (Second-Order Gateaux Orthogonality). Define for any pair of directions (h, h̃), with

h = (hη, hφ) and similarly for h̃, the mixed Gateaux derivative

D2
(η,φ)E[ψi(τ, η, φ)]

[
(h, h̃)

]
:=

∂2

∂ε ∂δ
E
[
ψi(τ, η0 + εhη, φ0 + δhφ)

]∣∣∣∣
ε=δ=0

.

Under RC1–RC6 and the bounded-Hessian condition SO1,

∣∣D2
(η,φ)E[ψi(τ, η0, φ0)]

[
(h, h̃)

]∣∣ ≤ C ∥h∥ ∥h̃∥.
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If moreover ∥η̂ − η0∥ = Op(n
−1/4) and ∥φ̂− φ0∥ = Op(n

−1/4) (SO2), then

D2
(η,φ)E[ψi(τ, η̂, φ̂)]

[
(η̂ − η0, φ̂− φ0)

]
= op(n

−1/2).

By Lemmas 1 and 2, the moment function is exactly orthogonal to first-order perturbations in

(η, φ) and has only negligible second-order sensitivity op(n
−1/2). This fully establishes Neyman

orthogonality in Gateaux form and underpins the
√
n-consistency, asymptotic normality, and

semiparametric efficiency of the Adaptive DML-IV estimator.

Under the maintained assumptions and regularity conditions, first-order derivatives vanish

and second-order mixed derivatives are bounded, such that any bias introduced by simultaneous

small errors in η and φ is op(n
−1/2). This preservation of

√
n-consistency, asymptotic normality,

and semiparametric efficiency of the Adaptive DML-IV estimator holds even when employing

advanced ML methods.

Theorem 2 (Neyman Orthogonality of the ML-IV Estimator). The ML-IV estimator τ̂ML-IV is

defined by

τ̂ML-IV =
1
n

∑n
i=1 ŵ(Zi,Wi)Yi

1
n

∑n
i=1 ŵ(Zi,Wi)Di

. (12)

satisfies Neyman Orthogonality with respect to the nuisance parameters η = (π, q,m) when the

optimal instrument ŵ(Zi,Wi) = E
[
Di | Zi,Wi

]
is used and cross-fitting along with regulariza-

tion techniques are employed in the estimation of η. The construction of moment function here

is based on (Chernozhukov et al., 2018, 2022).

Remark 1 (Equivalence to the classical IV equation). Although I have derived the orthogonal

DML-IV moment in (7), in fact it collapses algebraically to the usual IV condition. This

shows that the more elaborate-looking moment in this paper is exactly equivalent to solving
1
n

∑
i ŵi (Yi − τDi) = 0 with ŵi = [Di | Zi,Wi].

Substitute

π(Wi) = E[Zi | Wi], q(Zi,Wi) = E[Di | Zi,Wi], m(Wi) = E
[
Yi − τDi − β⊤Wi,ld

∣∣ Wi

]
,

into

0 = E
[
(Zi − π(Wi))

(
Yi − τDi −m(Wi) + τ q(Zi,Wi)

)]
.
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By iterated expectations,

E
[
(Zi − π(Wi))(Yi − τDi −m(Wi))

]
= E

[
(Zi − π(Wi)) τDi

]
,

and

E
[
(Zi − π(Wi)) q(Zi,Wi)

]
= E

[
(Zi − π(Wi))Di

]
.

Hence the two τ–terms cancel, leaving

E
[
(Zi − π(Wi))(Yi − τDi)

]
= 0,

which, using π(Wi) = E[Zi | Wi], is equivalent to

E
[
w(Zi,Wi) (Yi − τDi)

]
= 0, w(Zi,Wi) = E[Di | Zi,Wi].

Thus the DML-IV estimator—defined by solving 1
n

∑
i ŵi (Yi − τDi) = 0—is identical to the

orthogonal moment solution.

Lemma 3 (Adaptive Second-Order Orthogonality). Under assumptions (SO1)–(SO3), the mixed

partial derivative
∂2

∂φ ∂η
E
[
ψi(τ, η, φ)

]∣∣∣∣
(η0,φ0)

is bounded, and the product ∥∆η∥∥∆φ∥ = op(n
−1/2). Consequently, the second-order terms in

the Taylor expansion of E[ψi(τ, η, φ)] around (η0, φ0) are op(n
−1/2).

The expansion demonstrates that, by RC6 and assumptions (SO1)–(SO3), both first-order

and second-order contributions of estimation errors in nuisance parameters η and advanced ML

parameters φ to the moment function are negligible. This robust control through cross-fitting,

regularization, and sparsity ensures Neyman orthogonality, effectively addressing overfitting

and sparsity issues in high-dimensional adaptive ML-IV models.

3.2 Double Robustness

Double Robustness ensures that the estimator for τ remains consistent if at least one of the

two nuisance models—either the treatment model q(Zi,Wi) or the outcome model m(Wi)—is
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correctly specified, even if the other is misspecified (Athey, Imbens and Wager, 2018; Belloni et

al., 2017; Chernozhukov et al., 2018).

I now show that the ML–IV estimator remains consistent if either the first-stage nuisance

function

q(Zi,Wi) = E[Di | Zi,Wi]

or the second-stage nuisance function

m(Wi) = E
[
Yi − τDi − β⊤Wi,ld

∣∣ Wi

]
is correctly specified, even if the other is misspecified. Note that the structural outcome equation

Yi = τ Di + β⊤Wi,ld + δ Ai + ϕi

includes only the low-dimensional subset Wi,ld ⊆ Wi; however, since (Wi) = E
[
Yi − τDi −

β⊤Wi,ld

∣∣ Wi

]
conditions on the full Wi, the presence of Wi,ld in the structural form is fully

absorbed into m(Wi) and does not alter the double-robustness proof below.

Theorem 3 (Double Robustness). Under Assumptions IV1–IV5 and Regularity Conditions

RC1–RC6, let

ψi(τ, η) = (Zi − π(Wi))
[
Yi − τDi −m(Wi) + τ q(Zi,Wi)

]
.

Suppose that either

∥q̂(Zi,Wi)− q(Zi,Wi)∥L2 = op(1) or ∥m̂(Wi)−m(Wi)∥L2 = op(1).

Then
1

n

n∑
i=1

ψi(τ, η̂) = op(n
−1/2),

and consequently any root-n-consistent solution τ̂ to 1
n

∑
i ψi(τ̂ , η̂) = 0 satisfies τ̂

p→ τ .

Consider two cases:

Case 1: Correct Endogenous Variable (Treatment) Model q(Zi,Wi) Assume q(Zi,Wi) =

E[Di | Zi,Wi] is correctly specified, while m(Wi) may be misspecified.
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Starting from the moment function,

ψi(τ, η, φ) =
(
Zi − π(Wi)

)(
Yi − τDi −m(Wi) + τq(Zi,Wi)

)
,

take expectations conditional on Wi:

E[ψi(τ, η, φ) | Wi] = E
[(
Zi − π(Wi)

)(
Yi − τDi −m(Wi) + τq(Zi,Wi)

) ∣∣∣Wi

]
= E

[(
Zi − π(Wi)

)(
δAi + ϕi −m(Wi) + τ(Di − q(Zi,Wi))

) ∣∣∣Wi

]
,

where I substituted Yi = τDi + δAi + ϕi.

Since q(Zi,Wi) = E[Di | Zi,Wi], Ihave E[Di − q(Zi,Wi) | Zi,Wi] = 0. Under Assumptions

(A1) and (A3), E[(Zi − π(Wi))Ai | Wi] = 0 and E[(Zi − π(Wi))ϕi | Wi] = 0. Thus,

E[ψi(τ, η, φ) | Wi] = E
[
(Zi − π(Wi))(−m(Wi))

∣∣∣Wi

]
= 0,

because E[Zi − π(Wi) | Wi] = 0.

Hence, even with a misspecified m(Wi), the moment condition holds when the treatment

model is correct. Cross-fitting and regularization ensure that errors in estimating m(Wi) do

not affect the first-order properties of τ̂ML-IV. Therefore, τ̂ML-IV converges in probability to τ .

Case 2: Correct Outcome Model m(Wi,ld) Assume

m(Wi,ld) = E
[
Yi − τDi | Wi,ld

]
is correctly specified, while the first-stage model q(Zi,Wi) may be misspecified. Starting from

the orthogonal moment

ψi(τ, η, φ) = (Zi − π(Wi))
(
Yi − τDi −m(Wi,ld) + τ q(Zi,Wi)

)
,

take expectations conditional on Wi,ld:

E
[
ψi(τ, η, φ) | Wi,ld

]
= E

[
(Zi − π(Wi))

(
Yi − τDi −m(Wi,ld) + τ q(Zi,Wi)

) ∣∣∣ Wi,ld

]
= E

[
(Zi − π(Wi))

(
δ Ai + ϕi + τ (Di − q(Zi,Wi))

) ∣∣∣ Wi,ld

]
,
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where I used Yi = τDi + β⊤Wi,ld + δAi + ϕi and the definition of m(·). Since

E
[
(Zi−π(Wi))Ai | Wi,ld

]
= 0, E

[
(Zi−π(Wi))ϕi | Wi,ld

]
= 0, E

[
Di−q(Zi,Wi) | Zi,Wi

]
= 0,

it follows that

E
[
ψi(τ, η, φ) | Wi,ld

]
= 0.

Thus τ̂ML-IV remains consistent even if q(Zi,Wi) is misspecified, provided m(Wi,ld) is correctly

specified.

In both cases, the estimation of nuisance parameters η uses cross-fitting with advanced ML

techniques governed by φ. While the proof here assumes φ = φ0 for first-order consistency,

the second-order analysis (discussed earlier) ensures that the inclusion of φ does not affect

consistency. Specifically, boundedness and convergence rate conditions on ∆η and ∆φ guarantee

that any bias introduced by advanced ML methods is asymptotically negligible.

3.3 Asymptotic Normality and Semiparametric Efficiency

Theorem 4 (Consistency and Asymptotic Normality of τ̂ML-IV). Under Assumptions IV1–IV5,

Regularity Conditions RC1–RC4, and Rate Conditions RC5–RC6, the estimator τ̂ML-IV is con-

sistent and asymptotically normal:

√
n(τ̂ML-IV − τ)

d−→ N (0, V ),

where the asymptotic variance V is given by

V =
Var
(
w(Zi,Wi)

(
δAi + ϕi

))
(
E
[
w(Zi,Wi)Di

])2 . (13)

3.4 Efficiency Bound and Semiparametric Optimality

Theorem 4 established that

√
n
(
τ̂ − τ

) d−→ N
(
0, V

)
, V =

Var
(
w(Zi,Wi) (δAi + ϕi)

)[
E{w(Zi,Wi)Di}

]2 .
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To verify that V is the semiparametric efficiency bound, an explicit asymptotic-linear represen-

tation is required together with a demonstration that the corresponding influence function lies

in the tangent space of the model.

Lemma 4 (Tangent–Space Completeness). Assume the completeness condition E
[
f(Z,W ) |

W
]
= 0 ⇒ f = 0 a.s. Then the closed linear span of all score directions generated by

perturbations of (π, q,m) is

span{scores} = L2,0(P ), L2,0(P ) := {g ∈ L2(P ) : E[g] = 0}.

Consequently every influence function in that space—and in particular Ψi = w(Zi,Wi) (Yi −
τDi)/E[wD] —attains the minimum asymptotic variance among regular estimators (Chamber-

lain, 1987; Newey, 1990).

Lemma 5 (Remainder–Term Bound). Suppose ∥η̂ − η0∥L2 = op(n
−1/4) and that the map η 7→

ψi(τ, η) has a bounded second Gateaux derivative. Then the plug-in error

Rn =
1

n

n∑
i=1

[
ψ̂i(τ)− ψi(τ)

]
= op(n

−1/2).

Lemma 6 (Semiparametric Efficiency of τ̂). Under IV1–IV5 and RC1–RC6, the completeness

condition in Lemma 4, and the remainder control in Lemma 5,

τ̂ − τ =
1

n

n∑
i=1

Ψi + op
(
n−1/2

)
, Ψi =

w(Zi,Wi)
(
Yi − τDi

)
S

, S = E{w(Zi,Wi)Di}.

Hence Var(Ψi) = V , and no regular estimator can attain an asymptotic variance strictly below

V .

4 Monte Carlo Simulations

4.1 Data Generation Process

The data generation process adheres to the structural model specified in (1) and (2). For each

simulation run, n observations are generated for the instrumental variables Zi, covariates Wi,
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unobserved confounder Ai, endogenous variable Di, and outcome variable Yi.

Zi consist of 5 independent variables drawn from a uniform distribution:

Zij ∼ U(0, 1), j = 1, . . . , 5.

These instruments exhibit strong relevance for Di and satisfy exogeneity assumptions, mak-

ing them suitable for IV estimation.

The covariates Wi include p = 200 high-dimensional control variables:

Wik ∼ N (0, 1), k = 1, . . . , 200.

This setup reflects real-world scenarios where high-dimensional data necessitates effective

regularization and feature selection to mitigate overfitting.

The unobserved confounder Ai is introduced as:

Ai ∼ N (0, 1),

capturing unmeasured influences on both Di and Yi that generate endogeneity.

The endogenous variable Di is generated using a combination of nonlinear and linear com-

ponents:

Di = g(Zi,Wi) + γAi + νi,

where γ = 1.0, νi ∼ N (0, 1), and

g(Zi,Wi) = β1Zi1 + β2Z
2
i2 + 0.5 sin(Zi3) +

5∑
j=4

ZijWij.

The linear component includes contributions from Wi and Ai:

Linear Component =
200∑
k=1

Wik

( γ

200

)
+ γAi.
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To ensure positivity of Di, I impose:

Di =

Di, if Di > 0,

0.1, otherwise.

The outcome variable Yi is generated as:

Yi = τDi +
200∑
k=1

Wik

( γ

200

)
+ δAi + εi,

where τ = 1.0, δ = 0.5, and εi ∼ N (0, 1).

The true value of τ = 1.0 serves as a benchmark for evaluating the estimated τ̂ , with

deviations providing insights into the estimator’s bias, variance, and consistency. The accuracy

of τ̂ across simulation runs directly supports the theoretical claim of Neyman orthogonality for

the moment conditions.

The Monte Carlo simulations assess the estimator’s performance across four strategies:

Benchmark, Cross-Fitted, Regularized, and Cross-Fitted & Regularized. Each strategy involves

the use of ML models to estimate the nuisance functions π(W ), q(Z,W ), and m(W ), which are

then used to compute τ̂ by solving the orthogonal moment condition, as defined in (7). Note

that the first-stage predictor q(Zi,Wi) = E[Di | Zi,Wi] is equivalent to the optimal instrument

function w(Zi,Wi).

The Benchmark strategy does not employ regularization or cross-fitting, using the same

data for both stages. This approach serves as a baseline to highlight potential overfitting and

bias. The Cross-Fitted strategy partitions the data into k = 5 folds, with nuisance functions

estimated on k − 1 folds and evaluated on the held-out fold. Cross-fitting mitigates overfitting

and ensures orthogonality between the first and second stages. The Regularized strategy applies

regularization and hyperparameter tuning techniques for linear and nonlinear algorithms to

stabilize parameter estimates, optimize performance, and improve efficiency. The Cross-Fitted

& Regularized strategy combines the benefits of cross-fitting and regularization. This approach

reduces bias, variance, and overfitting while ensuring robustness to finite-sample challenges. In

each strategy, the estimated τ̂ is compared against the true value.
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4.2 Simulation Results

Figures 1 and 2 summarize the simulation results for the second-stage coefficient estimates

(with the true effect equal to one) and their corresponding standard errors, respectively. Under

the Benchmark strategy—using the same data to estimate both the nuisance functions and the

causal effect—the estimated coefficient is consistently below one, particularly in smaller samples.

This downward bias results from overfitting due to data reuse, which disrupts the orthogonality

conditions necessary for rapid convergence of the first-stage estimators. In contrast, when cross-

fitting is employed, the bias is substantially reduced. Partitioning the data so that the nuisance

functions are estimated on folds independent of those used for causal inference preserves the

orthogonality conditions central to the theoretical framework. For example, the cross-fitted and

regularized version of XGBoost yields an estimated coefficient of approximately 1.107 in small

samples; although this implies a slight upward bias (0.107) relative to the true value, the bias

decreases with increasing sample size in line with the fast convergence rates predicted by the

model. This indicates that cross-fitting not only counteracts the bias from data reuse but also

accelerates the convergence of the first-stage estimates, enhancing second-stage inference.

The Benchmark models display substantially larger standard errors across all sample sizes.

In contrast, cross-fitting markedly reduces the variability of the second-stage estimates. When

combined with regularization, the resulting standard errors are consistently lower. The full

DML estimator, which applies cross-fitting and residualization (as specified in (7)), achieves

the smallest standard errors, confirming its
√
n-consistency and asymptotic normality. In the

Reduced DML framework, where feature selection further refines the set of instruments and

controls, even models that are typically less stable (e.g., non-linear SVR and MLP) exhibit

improved precision with more consistent and lower standard errors.
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Figure 1: Estimated Coefficients for the Structural Parameter τ
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The combination of cross-fitting with regularization yields a significant reduction in vari-

ance for the DML estimates relative to the cross-fitted and regularized plug-in ML estimates.

Although regularization may introduce additional bias through shrinkage, its integration with

cross-fitting in the DML framework mitigates this effect, thereby improving the overall bias–variance

trade-off. In non-DML estimates, even when cross-fitting and regularization are applied, the

estimated coefficients tend to deviate further from the true value and have higher standard

errors than their DML counterparts. This difference underscores the importance of applying

orthogonality with residualization.

Among the flexible ML algorithms considered, the regularized and cross-fitted linear meth-

ods (Ridge, Lasso, EN) yield τ̂ estimates closest to the true value in the full-data DML frame-

work at n = 10, 000, with the corresponding standard errors being the smallest (as shown in

Figure 2). For nonlinear models, the Reduced DML estimates provide more significant improve-

ments for MLP and SVR, with slight improvements for GB, while full-data DML estimates for

GB and RF yield the best coefficients overall. These findings suggest that, among all strategies,

Ridge from full-data DML offers the most accurate and precise estimation of τ . This corrob-

orates the importance of fully nonparametric, data-driven model selection when implementing

ML methods in IV estimation for high-dimensional settings. As discussed in Section 2.2, I

introduce the nuisance parameter vector η = (π, q,m) and impose the associated convergence

rate and Neyman orthogonality conditions (see Equation (7)). These theoretical conditions

are fundamental to the proposed estimator, ensuring that the estimation errors in the nuisance

functions do not contaminate the second-stage causal inference. This framework—together with

the optimal instrument function w(Zi) = E[Wi | Zi] introduced in the same section—justifies

the use of fully nonparametric, data-driven model selection. The improved performance of

Ridge in the full-data DML estimates, as evidenced in the simulation results, thus corroborates

the importance of these theoretical properties.

In sum, the estimated coefficients and standard errors validate the theoretical properties

of the estimator. The evidence demonstrates that cross-fitting is essential for eliminating bias

from data reuse, and that combining cross-fitting with regularization—and further refining

the nuisance functions through feature selection in Reduced DML—ensures that the causal

effects converge to the true parameter and that the standard errors decrease in accordance with
√
n-asymptotic theory. The findings support the claims of optimal instrument approximation,

semiparametric efficiency, and double robustness in the proposed estimator.
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Figure 2: Standard Errors for the Structural Parameter τ
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Figure 3 in Appendix Appendix E reports the first-stage prediction metrics—bias, vari-

ance, mean squared error (MSE), and coverage—for the various estimation strategies. In the

first stage, the aim is to predict the endogenous variable Di using instruments Zi and controls

Wi. Note that in the cross-fitted and regularized strategies, there is no difference between

plug-in ML and DML estimators, as residualization is performed only in the second stage.

Across all strategies, as the sample size increases from n = 1000 to n = 10 000, both the bias

and MSE generally decrease for almost all models, with the notable exceptions of MLP and

SVR in some cases. Importantly, in the cross-fitted and regularized estimates, the prediction

variance decreases consistently only for Ridge regression; in contrast, the variance for most

other ML models tends to increase with larger sample sizes. This finding is in line with the

second-stage results, which consistently indicate that Ridge regression is the best prediction

model.

Moreover, among the ML models, the highest coverage rates in the regularized and cross-

fitted estimates are observed for Ridge and the nonparametric linear prediction (NLP) approach,

although NLP is less stable than Ridge. For the regularized and cross-fitted strategies, the bias

for Ridge, Lasso, and Elastic Net lies between the bias observed in the solely cross-fitted and

solely regularized models, yet remains significantly lower than that of the benchmark models.

For nonlinear models, such as XGBoost and Gradient Boosting, the regularized and cross-fitted

estimates yield consistently lower bias compared to the Benchmark, Regularized, and Cross-

fitted approaches alone, suggesting that these models capture the nonlinearity in the data

effectively. Nonetheless, Ridge regression remains the best overall model, providing the most

accurate and precise first-stage predictions.

Furthermore, when comparing the full-data DML with the Reduced DML approaches (where

Reduced DML employs feature selection to retain only the most important instruments and

controls) in Figure 4 in Appendix Appendix E, the results from a sample size of n = 10 000

indicate that the Reduced DML estimates achieve smaller bias and MSE for nonlinear models

such as XGBoost, MLP, and SVR—with a particularly significant decrease in variance for MLP.

These findings from the Reduced DML approach highlight that effective feature selection and

dimensionality reduction further stabilize the estimates for models that are otherwise highly

variable. Nonetheless, Ridge regression consistently yields the closest predictions to the true

value with the smallest standard errors across all strategies and sample sizes.

The empirical findings from Monte Carlo simulations closely mirror the inferences drawn
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in the literature [e.g., Chernozhukov et al., 2018, 2022], demonstrating that cross-fitting plays

a critical role in mitigating the bias arising from data reuse. Models that do not employ

cross-fitting—such as the Benchmark and solely Regularized strategies—consistently exhibit

substantially higher bias and variance, particularly in smaller samples or for complex model

classes. In contrast, cross-fitted estimators, especially when combined with carefully tuned regu-

larization, yield estimated coefficients converging toward the true value with reduced variability

and improved confidence interval coverage. While cross-fitting or regularization alone partly

mitigates overfitting, their combined use fully leverages asymptotic guarantees required for re-

liable second-stage inference, substantially reducing bias, variance, and coverage deficiencies.

Penalized linear methods (e.g., Lasso, Elastic Net) and well-tuned boosting algorithms (e.g.,

GB, XGBoost) tend to achieve a desirable balance of low bias and stable variance at moderate

sample sizes, whereas kernel-based or neural network models may require larger data to reach

comparable stability. Across all sample sizes, the synergy of cross-fitting and shrinkage ensures

that nuisance estimates satisfy the requirements for a doubly robust, Neyman-orthogonal IV

estimator, thereby enabling the proposed ML-IV method to accurately recover the causal ef-

fect τ even under high dimensionality, unobserved confounding, and the pursuit of an optimal

instrument function.

5 Estimating the Return to Education

Estimating the causal effect of education on earnings remains a central challenge in applied

econometrics due to the potential endogeneity of schooling. Angrist and Krueger (1991) illus-

trated that OLS estimates may be biased because unobserved factors are likely correlated with

educational attainment. Following Angrist and Krueger (1991), I reproduce the core empir-

ical estimation strategy (Models I and II in Table V) using U.S. Census data for men born

between 1930 and 1939 and constructs an instrument set that includes interactions between

quarter-of-birth and year-of-birth dummies. The replication is validated by closely matching

the traditional OLS and TSLS estimates of the return to education.

Table 1 reports the traditional OLS and TSLS-IV estimates along with the benchmark plug-

in ML models. Only in the last benchmark strategy, train/test split is applied. Accordingly,

in my replication of Angrist and Krueger (1991), the traditional TSLS-IV estimator yields a

causal effect of roughly 0.089 with a robust standard error of about 0.016, while OLS produces
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a lower estimate of 0.071 with negligible standard errors due to endogeneity bias. Extending

the analysis, naive full-sample plug-in ML models as benchmark ML strategy generate point

estimates that closely replicate the TSLS-IV result. However, these full-sample ML models

exhibit larger standard errors, likely due to overfitting in the first-stage estimation when the

same data are reused in both stages, which in turn inflates the variance in the second-stage

inference.

Table 1: OLS, Traditional TSLS, and Benchmark ML Models for the Return to Education

Notes: This table reports traditional OLS and TSLS-IV estimates along with benchmark plug-in

ML models that do not employ cross-fitting. The estimated coefficient τ represents the return to

education; standard errors are presented in parentheses and the corresponding 95% confidence intervals

are provided. The results are based on 329,509 observations and an instrument set of 30 variables.

When a simple train–test split is introduced the ML estimates maintain similar point esti-

mates but with notably reduced standard errors. This reduction results from partitioning the

data so that the same observations are not used for both the first-stage nuisance estimation

and the second-stage regression, thereby mitigating overfitting and reducing the upward bias

in variance estimates. Overall, while both traditional TSLS-IV and the full-sample plug-in

ML approaches deliver comparable point estimates, the additional variance introduced by data

reuse in the full-sample approach can be alleviated by a simple train–test split, leading to more

efficient and reliable inference.

Table 2 presents plug-in ML estimators that incorporate a fivefold cross-fitting strategy,

thereby differing from the full-sample and train–test split approaches reported in Table 1. In

Panel A, I report estimates from models that are cross-fitted without further regularization/tuning-
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up, whereas Panel B displays the corresponding estimates when regularization/hyperparameter

tuning is additionally applied. The plug-in ML models estimated with cross-fitting in Panel A

yield systematically lower point estimates relative to those obtained from the simple train–test

split approach reported in Table 1. In addition, the standard errors are smaller and, when

combined with the lower point estimates, lead to narrower confidence intervals relative to those

obtained under the train–test split framework. This improvement is consistent with the theo-

retical properties of the model that cross-fitting reduces overfitting in the first-stage estimation

and consequently alleviates the upward bias in variance estimates that typically arises from

reusing the same data in both stages.

Turning to the regularized models in Panel B, several important differences emerge relative

to both the train–test split results in Table 1 and the non-regularized cross-fitted models in

Panel A in Table 1. First, the point estimates for RF, GB, and XGBoost often shift, sometimes

notably, from their Panel A values. RF decreases from about 0.0606 to 0.0338, while GB remains

at 0.0524 but with an altered variance structure. Second, the standard errors for the regularized

RF and XGBoost in Panel B exceed those in Panel A (and in some instances, those in the

train–test split results as well), leading to wider confidence intervals. This increase in variance

can arise when hyperparameter tuning or penalization shrinks the first-stage predictions in ways

that amplify second-stage sampling variability—particularly if the regularization inadvertently

reduces the effective strength of the instruments or imposes constraints that introduce more

sensitivity in finite samples.

A similar pattern is evident among the linear estimators in Panel B. Compared to (un-

penalized) LR, the Ridge, Lasso, and EN estimates differ in both magnitude and precision.

Lasso (0.0758) and EN (0.0723) yield higher point estimates than LR (0.0629 or 0.0643 for

Ridge), but their standard errors—especially Lasso’s (0.0267)—are larger, reflecting the extra

variability introduced by penalization. I include both LR and these penalized linear methods in

Panel B to illustrate how regularization within a linear-model framework can reshape estimates

of the causal parameter. In principle, regularization should guard against overfitting in high-

dimensional or flexible specifications, but it can also increase variance in the second stage if the

penalized fit is highly sensitive to tuning parameters or if the first-stage predictions become too

aggressively shrunk. Thus, while combining cross-fitting with penalization and tuning often

mitigates overfitting, it might lead to higher standard errors in finite samples; the ultimate ef-

fect depends on how the penalty and hyperparameters interact with the data-generating process
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Table 2: Plug-in ML Estimates with Cross-Fitting for the Return to Education (K = 5)

Notes: Table reports plug-in ML estimates obtained via a fivefold cross-fitting procedure. Panel A

displays estimates without additional regularization (corresponding to standard linear regression mod-

els and default settings for nonlinear methods), whereas Panel B shows estimates when regularization

and hyperparameter tuning are applied. In Panel B, Ridge, Lasso, and Elastic Net estimators are

included to assess the effect of penalization, and the nonlinear models are tuned (e.g., Random Forest

with a maximum depth of 5, Gradient Boosting with a maximum depth of 3, and XGBoost with

corresponding parameter choices) to further mitigate overfitting and improve estimation precision.

Standard errors are reported in parentheses and the 95% confidence intervals in square brackets; the

estimated coefficient τ denotes the return to education.
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Table 3: DML Estimates with Cross-Fitting for the Return to Education (K = 5)

Notes: Table reports DML estimates obtained via a fivefold cross-fitting procedure and Neyman

orthogonality. Panel A presents models estimated without additional regularization or hyperparameter

tuning, whereas Panel B displays models that incorporate regularization/tuning. In Panel B, Ridge,

Lasso, and Elastic Net (EN) estimators are included to assess the impact of different penalty structures

relative to unpenalized linear regression (LR). For the nonlinear methods, tuning parameters (e.g.,

maximum tree depth, learning rate) are adjusted to control model complexity. Standard errors are

reported in parentheses and the 95% confidence intervals in square brackets; the estimated coefficient

τ denotes the return to education.
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and the strength of the instruments.

Table 3 reports DML estimates of the return to education, τ , obtained under a cross-

fitting framework with K = 5 folds. Panel A presents cross-fitted models without additional

regularization or hyperparameter tuning, whereas Panel B displays models in which regular-

ization/tuning is applied. For consistency, the same regularization and hyperparameter tuning

methods are employed for the same linear and non-linear ML algorithms in the plug-in ML

estimation strategy.

Both cross-fitting without and with regularization yield point estimates that are broadly

consistent with traditional TSLS-IV and the benchmark plug-in ML models. The combina-

tion of cross-fitting with regularization/tuning provides a nuanced trade-off between bias and

variance. In Panel B, the inclusion of Ridge, Lasso, and EN models alongside standard LR

facilitates a direct comparison of different linear regularization approaches. The observed dif-

ferences underscore the importance of careful hyperparameter selection to balance the benefits

of mitigating overfitting against the potential for increased variability.

Linear DML models such as Linear Regression, Ridge, Lasso, and EN closely match the

TSLS-IV benchmark. In contrast, nonlinear DML models yield lower estimates, suggesting

that controlling for nonlinearity via cross-fitting and residualization effectively corrects the

upward bias observed in näıve plug-in models. Although the standard errors for the nonlinear

DML models are slightly larger, the confidence intervals remain distinct from those of the

benchmark models. Overall, the DML-IV strategy achieves near-zero bias in the first stage,

consistent variance, and high coverage rates (around 93.35%), thereby ensuring valid inference

with
√
n-consistency.

6 Conclusions

The paper has introduced a novel DML-IV estimator for causal inference in high-dimensional

settings with unobserved confounders, effectively addressing endogeneity. Although the exist-

ing literature has established that such estimators can attain
√
n–consistency and asymptotic

normality despite nuisance estimation errors, the contribution of this paper lies in the full in-

tegration of cutting-edge, fully data–driven ML methods into the IV framework. Specifically,

the proposed estimator employs cross-fitting, advanced regularization/hyperparameter tuning,

data-driven feature reduction, and adaptive model selection to stabilize first-stage predictions.
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In addition, it implements an adaptive construction of the optimal instrument—namely, the

conditional expectation E[Di | Zi,Wi]—by leveraging both linear and nonlinear ML models

to combine high-dimensional controls and candidate instruments, thereby enhancing predictive

accuracy and instrument strength. This approach not only improves identification strength and

mitigates bias, but it also ensures that small estimation errors in the nuisance functions affect

the estimator only at a second-order level (i.e., op(n
−1/2)).

The theoretical analysis demonstrates that the estimator satisfies Neyman orthogonal-

ity—its moment function’s first derivative with respect to the nuisance parameters vanishes at

the true values—thus ensuring that the first-order asymptotic properties (consistency, asymp-

totic normality, and semiparametric efficiency) remain unchanged even when these functions

are estimated via complex, flexible ML methods. Moreover, because the optimal instrument is

estimated in a fully data–driven, nonparametric fashion, the estimator exhibits double robust-

ness and attains the semiparametric efficiency bound for τ , establishing it as optimally efficient

among regular, asymptotically linear estimators.

Empirical evidence from extensive Monte Carlo simulations and an application to estimating

the return to education corroborate these theoretical findings. The DML-IV estimator consis-

tently outperforms conventional TSLS-IV and plug-in ML estimators by achieving lower bias,

reduced variance, and improved mean squared error, while maintaining appropriate coverage

probabilities across varied sample sizes and model specifications. Thus, the paper makes a sig-

nificant contribution to the literature by (i) providing a fully data–driven, adaptive estimation

framework that leverages cutting-edge ML methods—including the construction of optimal

instruments—for robust causal inference; (ii) rigorously establishing that the estimator’s ro-

bust properties safeguard its first-order asymptotic behavior against second-order estimation

errors; and (iii) demonstrating, through both theory and empirical evidence, that the proposed

approach enhances the precision and reliability of causal effect estimation in complex, high-

dimensional settings. These advances extend the existing theoretical foundations and offer

practical improvements for applications where traditional IV methods and plug-in ML estima-

tors fall short.
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Appendix A Notation

In the paper, data are organized as a triangular array {zi,n}ni=1 on a common probability space

(Ω,A, P ). For each sample size n, each observation zi,n is a vector comprising the outcome Yi,

the endogenous treatment Di, and the covariate vector Xi, where Xi includes both the instru-

mental variables Zi and the controls Wi
4. Write Wi = (Wi,ld,Wi,hd), where only Wi,ld enters

linearly in the structural equation and the remaining controls Wi,hd are absorbed nonparamet-

rically into the outcome-nuisance function m(Wi). In the empirical implementation, I begin

by including every available covariate in the first-stage ML predictor of Di (i.e. Wi ≡ Wi,hd).

After fitting a flexible library of learners, I use feature-importance scores to prune Wi,hd down

to a smaller subset for the reduced-DML runs. By contrast, for the second-stage structural

equation I select a low-dimensional subset Wi,ld a priori on economic grounds (e.g. age, gender,

baseline covariates known to affect Yi). All remaining high-dimensional variation is absorbed

nonparametrically in m(Wi).

Although observations are independent across i, they are allowed to be nonidentically dis-

tributed; parameters characterizing the distribution of zi,n are implicitly indexed by n, though

this index is suppressed for notational simplicity. The empirical expectation of a function f(z) is

denoted by En[f(z)] =
1
n

∑n
i=1 f(zi), and the population expectation is represented by E[f(z)].

For any vector v ∈ Rp, the ℓ2-norm is denoted ∥v∥2 =
√∑p

j=1 v
2
j and the ℓ1-norm by

∥v∥1 =
∑p

j=1 |vj|. ∥v∥0 represents the number of nonzero components of v. The L2 norm of

a function f is defined by ∥f∥2,n =
√

1
n

∑n
i=1 f(zi)

2. For a vector v ∈ Rp and an index set

T ⊂ {1, . . . , p}, vT refers to the vector that agrees with v on T and is zero elsewhere, while

T c denotes the complement of T . For any two positive sequences an and bn, an ≍ bn indicates

that there exist constants c, C > 0 independent of n such that c bn ≤ an ≤ C bn. The standard

notations Op(·) and op(·) are employed for convergence in probability.

In the proposed adaptive ML-IV model, the endogenous regressor Di is generated by

f(Zi,Wi,hd;λ, θ), which is estimated via ML methods incorporating regularization, hyperpa-

rameter tuning, feature reduction, and model selection. Here λ and θ parameterize these adap-

tive ML techniques. Thus the entire control vector Wi enters nonparametrically via m(Wi),

while only Wi,ld appears in the linear second stage.

4In the first-stage ML predictor I use the full covariate vector Wi (“high-dimensional,” so Wi ≡ Wi,hd), while
in the second-stage regression I include only a selected subsetWi,ld (low-dimensional). ThusWi,ld ⊂ Wi ≡ Wi,hd.
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In the model, the optimal instrument function is defined as w(Zi,Wi) = E[Di | Zi,Wi],

which plays a key role in achieving semiparametric efficiency. In practice, this function is

estimated from the data—denoted by ŵ(Zi,Wi)—and is used to form the plug-in prediction D̂i

in the first stage and subsequently in the construction of the moment condition for estimating τ .

The main moment condition is given by ψi(τ, η, φ), which, under the maintained IV assumptions

and mild smoothness conditions, identifies the causal parameter τ . The nuisance estimators

are assumed to converge at rates satisfying ∥η̂ − η∥L2 = op(n
−1/4), ensuring that the estimator

for τ is
√
n-consistent, asymptotically normal, and semiparametrically efficient.
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Appendix B Proofs

Appendix B.1 Proof of Theorem 1

Start from the structural equation with the low-dimensional controls included:

Yi = τ Di + β⊤Wi,ld + δ Ai + ϕi.

Rearrange to isolate the part orthogonal to Wi:

Yi − β⊤Wi,ld = τ Di + δ Ai + ϕi.

Multiply both sides by Zi and take conditional expectation given Wi:

E
[
Zi (Yi − β⊤Wi,ld) | Wi

]
= τ E

[
ZiDi | Wi

]
+ δ E[ZiAi | Wi] + E[Zi ϕi | Wi].

By the IV exogeneity assumptions E[ZiAi | Wi] = 0 and E[Ziϕi | Wi] = 0, this simplifies to

E
[
Zi (Yi − β⊤Wi,ld) | Wi

]
= τ E

[
ZiDi | Wi

]
.

Next, subtract π(Wi) (Yi−β⊤Wi,ld) from the left-hand side and τ π(Wi)Di from the right-hand

side, where π(Wi) = E[Zi | Wi]. I obtain

E
[
(Zi − π(Wi)) (Yi − β⊤Wi,ld) | Wi

]
= τ E

[
(Zi − π(Wi))Di | Wi

]
.

Rewriting the left side as a single conditional expectation gives

E
[
(Zi − π(Wi)) (Yi − β⊤Wi,ld − τ Di) | Wi

]
= 0.

Finally, insert the definitions of the nuisance functions

m(Wi) = E[Yi − β⊤Wi,ld − τDi | Wi], q(Zi,Wi) = E[Di | Zi,Wi],
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and add and subtract m(Wi) and τ q(Zi,Wi) inside the expectation:

0 = E
[
(Zi − π(Wi))

(
Yi − β⊤Wi,ld − τ Di −m(Wi) + τ q(Zi,Wi)

) ∣∣∣ Wi

]
.

This is exactly the conditional form of the orthogonal moment ψi(τ, η, φ) in (7), hence τ is

identified by E[ψi(τ, η, φ) | Wi] = 0, completing the proof.

B.2 Proof of Lemma 1

Write

ψi(τ, η+εh, φ) = (Zi−π(Wi)−ε hπ(Wi))
[
Yi−τDi−m(Wi)−ε hm(Wi)+τ{q(Zi,Wi)+ε hq(Zi,Wi)}

]
.

Differentiating under the expectation and evaluating at ε = 0 gives

DηE[ψi(τ, η0, φ0)]
[
h
]
= −E

[
hπ(Wi)ωi

]
− E

[
(Zi − π(Wi)) (hm(Wi)− τ hq(Zi,Wi))

]
,

where ωi = Yi − τDi −m(Wi) + τ q(Zi,Wi).

By the definitions

E
[
(Zi − π(Wi)) (Di − q(Zi,Wi)) | Wi

]
= 0, E

[
Yi − τDi −m(Wi) | Wi

]
= 0,

and the law of iterated expectations, each of the two terms above vanishes.

Hence DηE[ψi(τ, η0, φ0)]
[
h
]
= 0.

B.3 Proof of Lemma 2

Define the map

T : (η, φ) 7→ E
[
ψ(θ0, η, φ)

]
.

Let

h = (η̂ − η0, φ̂− φ0),
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and perform a second–order Gateaux expansion of T around (η0, φ0). For some t ∈ (0, 1),

T (η0 + hη, φ0 + hφ) = T (η0, φ0) +DT(η0,φ0)[h] +
1
2
D2T(η0,φ0)[h, h] +R(h),

where

DT(η0,φ0)[h] = E
[
ψη(θ0, η0, φ0)[hη] + ψφ(θ0, η0, φ0)[hφ]

]
,

and the remainder satisfies

R(h) = 1
6
D3T(η0+t h)[h, h, h] = o

(
∥h∥2

)
by SO3.

By the Neyman-orthogonality condition (SO0), the first-order term vanishes:

DT(η0,φ0)[h] = 0.

Hence

T (η̂, φ̂)− T (η0, φ0) =
1
2
D2T(η0,φ0)[h, h] + R(h).

By SO1 the bilinear form D2T is uniformly bounded:

∣∣D2T(η0,φ0)[h, h]
∣∣ ≤ C ∥h∥2.

Finally, SO2 ensures ∥h∥2 = Op(n
−1/2).

Combining these bounds gives

∣∣T (η̂, φ̂)− T (η0, φ0)
∣∣ ≤ 1

2
C ∥h∥2 + o

(
∥h∥2

)
= Op(n

−1/2),

as claimed.

B.4 Proof of Theorem 2

Consider the moment function in (7). Introduce a small perturbation ϵh = (ϵhπ, ϵhq, ϵhm) to

the nuisance parameters η, while treating φ as fixed (i.e., ∆φ = 0). That is,

η + ϵh = (π + ϵhπ, q + ϵhq, m+ ϵhm).

50



Substitute these perturbed parameters into ψi, expand, and retain only first-order terms:

ψi(τ, η + ϵh, φ) ≈ ψi(τ, η, φ)

− ϵ hπ(Wi)ωi − ϵ (Zi − π(Wi))
(
hm(Wi)− τ hq(Zi,Wi)

)
,

where

ωi = Yi − τ Di − m(Wi) + τ q(Zi,Wi).

Taking expectations conditional on Wi gives:

E
[
ψi(τ, η + ϵh, φ) | Wi

]
≈ E

[
ψi(τ, η, φ) | Wi

]
− ϵE

[
hπ(Wi)ωi Wi

]
− ϵE

[
(Zi − π(Wi))

(
hm(Wi)− τ hq(Zi,Wi)

)
Wi

]
.

By Neyman orthogonality (from Lemma 1), the derivative with respect to η vanishes at

η = η0 (with φ fixed at φ0), thus

∂

∂ϵ
E
[
ψi(τ, η + ϵh, φ) | Wi

]∣∣∣∣
ϵ=0

= 0.

This implies that first-order perturbations in η do not bias the moment condition, confirming

Neyman orthogonality for the Adaptive DML-IV estimator.

B.5 Proof of Lemma 3

The proof follows directly from Lemmas 1 and 2, extended to the setting of advanced ML-IV

models.

I expand the expectation of the moment function around the true parameter values (η0, φ0)
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with small perturbations ∆η = η̂ − η0 and ∆φ = φ̂− φ0. Specifically, consider

E
[
ψi(τ, η0 +∆η, φ0 +∆φ)

]
≈ E

[
ψi(τ, η0, φ0)

]
+ (∆η)⊤

∂E[ψi(τ, η, φ)]

∂η

∣∣∣∣
(η0,φ0)

= 0︸︷︷︸
by RC6

+ (∆φ)⊤
∂E[ψi(τ, η, φ)]

∂φ

∣∣∣∣
(η0,φ0)

≈ 0︸︷︷︸
by RC6

+
1

2

(
∆η

∆φ

)⊤
∂2E[ψi(τ, η, φ)]

∂(η, φ)2

∣∣∣∣
(η0,φ0)

(
∆η

∆φ

)
+ higher-order terms.

The first-order terms vanish due to RC6, which guarantees that

∂E[ψi(τ, η, φ)]

∂η

∣∣∣∣
(η0,φ0)

= 0 and
∂E[ψi(τ, η, φ)]

∂φ

∣∣∣∣
(η0,φ0)

≈ 0.

This vanishing implies that small perturbations in η and φ do not affect the expectation of

the moment function to first order.

B.6 Proof of Theorem 3

Define the sample moment

Mn(τ, η) =
1

n

n∑
i=1

ψi(τ, η).

Fix τ and let h = (q̂− q, m̂−m). By a two-term Gateaux-Taylor expansion in the nuisance

directions ( Lemma 1 and Lemma 2),

Mn(τ, η̂) =Mn(τ, η0) +DqMn(τ, η0)[ q̂ − q ] +DmMn(τ, η0)[ m̂−m ] +Rn,

where Rn = op(n
−1/2).

But by definition of the true nuisances,

Mn(τ, η0) =
1

n

∑
(Zi − π(Wi))

[
Yi − τDi −m(Wi) + τq(Zi,Wi)

]
= 0,
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while

DqMn(τ, η0)[q̂ − q] = τ
1

n

∑
(Zi − π(Wi))

[
q̂(Zi,Wi)− q(Zi,Wi)

]
,

which is op(n
−1/2) if q̂ → q in L2, and

DmMn(τ, η0)[m̂−m] = − 1

n

∑
(Zi − π(Wi))

[
m̂(Wi)−m(Wi)

]
,

which is op(n
−1/2) if m̂→ m in L2. Hence in either caseMn(τ, η̂) = op(n

−1/2). Any
√
n–consistent

root τ̂ of the equationMn(τ̂ , η̂) = 0 must then satisfy τ̂
p→ τ , establishing double robustness.

B.7 Proof of Theorem 4

By Theorem 3, the estimator τ̂ML-IV remains consistent under either a correct treatment or a

correct outcome nuisance model. Theorems 2 and 3 (together with Lemmas 1 and 2) further

ensure that errors in nuisance-function estimation affect τ̂ML-IV only at higher order, so that

τ̂ML-IV is asymptotically unbiased. Under these properties (and standard rate assumptions), a

Taylor expansion plus the Central Limit Theorem yields consistency and asymptotic normality

with variance V .

More concretely, using the Law of Large Numbers (LLN) and consistency of the nuisance

estimators:

1

n

n∑
i=1

ŵ(Zi,Wi)Yi
p−→ E[w(Zi,Wi)Yi],

1

n

n∑
i=1

ŵ(Zi,Wi)Di
p−→ E[w(Zi,Wi)Di].

Given the moment condition E[w(Zi,Wi)(Yi − τDi)] = 0, I obtain

E
[
w(Zi,Wi)Yi

]
= τ E

[
w(Zi,Wi)Di

]
,

which implies

τ̂ML-IV =
1
n

∑n
i=1 ŵ(Zi,Wi)Yi

1
n

∑n
i=1 ŵ(Zi,Wi)Di

p−→ τ.

Thus, consistency is established.

For asymptotic normality, let ψi(τ, η) be the orthogonal score. A first-order Taylor expansion
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of the sample moment condition around τ gives

0 =
1

n

n∑
i=1

ψi

(
τ̂ML-IV, η̂

)
≈ 1

n

n∑
i=1

ψi(τ, η) +
(

1
n

n∑
i=1

w(Zi,Wi)Di

) (
τ̂ML-IV − τ

)
+ op(n

−1/2).

Rearranging terms yields

τ̂ML-IV − τ =
1
n

∑n
i=1w(Zi,Wi)

(
δAi + ϕi

)
1
n

∑n
i=1w(Zi,Wi)Di

+ op
(
n−1/2

)
.

By the Central Limit Theorem (CLT),

1√
n

n∑
i=1

w(Zi,Wi)
(
δAi + ϕi

) d−→ N (0, σ2),

with

σ2 = Var
(
w(Zi,Wi)

(
δAi + ϕi

))
,

and the denominator converges in probability to E[w(Zi,Wi)Di]. Therefore,

√
n
(
τ̂ML-IV − τ

)
=

1√
n

∑n
i=1w(Zi,Wi)

(
δAi + ϕi

)
E
[
w(Zi,Wi)Di

] + op(1),

d−→ N
(
0,

σ2(
E[w(Zi,Wi)Di]

)2).
(14)

Hence, τ̂ML-IV is asymptotically normal with variance V = σ2(
E[w(Zi,Wi)Di]

)2 as given in (13).

B.8 Proof of Lemma 6

Define the empirical score

ψ̂i(τ) =
(
Zi − π̂(Wi)

)[
Yi − m̂(Wi)− τ

(
Di − q̂(Zi,Wi)

)]
.

54



The cross-fitted estimator τ̂ solves n−1
∑n

i=1 ψ̂i(τ̂) = 0. A first-order Taylor expansion around

the true parameter gives

0 =
1

n

n∑
i=1

ψ̂i(τ) + (τ̂ − τ)
1

n

n∑
i=1

∂ψ̂i(τ)

∂τ
+ op

(
n−1/2

)
,

because |τ̂ − τ | = Op(n
−1/2) by Theorem 4. The empirical derivative satisfies

1

n

n∑
i=1

∂ψ̂i(τ)

∂τ
= − 1

n

n∑
i=1

(
Zi − π̂(Wi)

)(
Di − q̂(Zi,Wi)

) p−→ −S,

by consistency of π̂ and q̂ and the law of large numbers.

Decompose the sample mean of the score at τ as

1

n

n∑
i=1

ψ̂i(τ) =
1

n

n∑
i=1

ψi(τ) +Rn,

where Rn denotes the plug-in error. Lemma 5 shows Rn = op(n
−1/2). Solving for τ̂−τ therefore

yields

τ̂ − τ =

1

n

n∑
i=1

ψi(τ)

S
+ op

(
n−1/2

)
, ψi(τ) =

(
Zi − π(Wi)

)(
Yi − τDi −m(Wi) + τq(Zi,Wi)

)
.

Because m(Wi) = E[Yi − τDi | Wi] and q(Zi,Wi) = E[Di | Zi,Wi], ψi(τ) simplifies to

w(Zi,Wi)
(
Yi − τDi

)
. The central limit theorem then gives

1√
n

n∑
i=1

ψi(τ)
d−→ N

(
0, σ2

)
, σ2 = Var

(
w(Zi,Wi)(δAi + ϕi)

)
,

so
√
n(τ̂ − τ) converges to N

(
0, σ2/S2

)
, which equals V .

Lemma 4 places Ψi in the closure of the tangent space, whence no regular estimator can

have asymptotic variance smaller than Var(Ψi). Consequently V is the semiparametric efficiency

bound. No data related to finr˙ a
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Appendix C Incorporating Tertiary Parameters φ = (λ, θ)

into Neyman Orthogonality

In this Appendix I show that the Neyman-orthogonal score

ψi

(
τ, η, φ

)
=
(
Zi − π(Wi;φ)

) [
Yi − τ Di −m(Wi;φ) + τ q(Zi,Wi;φ)

]
remains orthogonal not only to the usual nuisance functions η = (π, q,m), but also to any

data-driven choice of tertiary parameters φ. Here φ = (λ, θ) is allowed to index regularization

parameters (e.g. Lasso/Ridge penalty λ, tree-depth penalty, network-dropout rate), feature

importance–based dimension-reduction thresholds (e.g. a cutoff on an importance score that

prunes low-weight covariates), and automated model-selection decisions (e.g. a discrete choice

of “use Random Forest vs. XGBoost vs. neural net,” plus their associated tuning parameters).

In other words, a single φ-vector can encode (i) which learner is chosen, (ii) which sub-

set of features were retained based on importance scores, and (iii) the associated regulariza-

tion/hyperparameter choices for that learner. The goal is to prove that, as long as the final

φ̂ converges to some φ0 at a sufficiently fast rate and each corresponding nuisance estimate

converges at op(n
−1/4), then

∂

∂φ
E
[
ψi(τ, η0, φ)

]∣∣∣∣
φ=φ0

= 0,

and the mixed second derivative ∂2E[ψ]/(∂φ ∂η) remains bounded. This guarantees that no

matter how I built the ML pipeline—regularization, feature-importance pruning, or a cross-

validated model-search tree—the first-order bias from tuning/model-selection disappears. The

cross-fitting in the main text then ensures that hyperparameter search and automated model

selection enter only at op(n
−1/2).

Assumption A.1 (Uniform Convergence & Cross-Fitting Independence). There exist determin-

istic sequences δn = o(n−1/4) and ϵn = o(n−1/2) such that, uniformly over a neighborhood of

φ0,

∥q̂ − q0∥L2 , ∥π̂ − π0∥L2 , ∥µ̂− µ0∥L2 , ∥r̂ − r0∥L2 ≤ δn,

∥q̂ − q0∥∞, ∥π̂ − π0∥∞, ∥µ̂− µ0∥∞, ∥r̂ − r0∥∞ ≤ ϵn,
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and φ̂
p−→ φ0. Moreover, for each observation i, the nuisance estimators η̂i and the chosen

hyperparameters φ̂i (trained on data excluding i) are independent of (Yi, Di, Zi,Wi).

Assumption A.2 (Parametric Path & Gateaux Differentiability in φ). The hyperparameter φ

lies in an open, convex subset Φ ⊂ Rp. For each φ ∈ Φ, define nuisance maps

π( · ;φ), q( · , · ;φ), µ( · ;φ), r( · ;φ),

so that at the true φ0,

π0(W ) = π(W ;φ0) = E[Z | W ], q0(Z,W ) = q(Z,W ;φ0) = E[D | Z,W ],

µ0(W ) = µ(W ;φ0) = E[Y | W ], r0(W ) = r(W ;φ0) = E[D | W ], m0(W ) = µ0(W )−τ r0(W ).

For each fixed (z, w), the functions φ 7→ π(w;φ), q(z, w;φ), µ(w;φ), r(w;φ) are Gateaux-

differentiable at φ0. Denote their directional derivatives by

Dφπ(w;φ0)[h], Dφq(z, w;φ0)[h], Dφµ(w;φ0)[h], Dφr(w;φ0)[h],

for any direction h ∈ Rp. Moreover, there exists a finite constant C such that for every unit

direction h,

sup
w

|Dφπ(w;φ0)[h]|+ sup
(z,w)

|Dφq(z, w;φ0)[h]|+ sup
w

|Dφµ(w;φ0)[h]|+ sup
w

|Dφr(w;φ0)[h]| ≤ C.

In particular, this covers (a) any continuous regularization parameter λ; (b) any continuous

feature-importance threshold or feature-pruning decision that can be approximated by a smooth

path; and (c) any smooth weight assignment among a small discrete set of candidate learners,

provided it can be embedded in a continuous parameterization.

Assumption A.3 (Second-Order Remainder Control). For any direction h ∈ Rp, define the

perturbed nuisance functions

πt(w) = π
(
w;φ0+t h

)
, qt(z, w) = q

(
z, w;φ0+t h

)
, µt(w) = µ

(
w;φ0+t h

)
, rt(w) = r

(
w;φ0+t h

)
,

and set mt(w) = µt(w) − τ rt(w). There exists some η > 0 and a function R(t) such that
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limt→0R(t)/t = 0 and, for all sufficiently small |t|,

sup
(z,w)

∣∣qt(z, w)− q0(z, w)−Dφq(z, w;φ0)[ t h ]
∣∣ ≤ R(t),

and similarly for πt, µt, rt. Equivalently, each Gateaux expansion has a second-order remainder

o(t).

Lemma 7 (Neyman Orthogonality in φ). Under Assumptions A.1–A.3, define the population

moment

M(τ, φ) = E
[
ψi

(
τ, η0, φ

)]
= E

[(
Z − π(W ;φ)

) {
Y − τD −m(W ;φ) + τ q(Z,W ;φ)

}]
.

Then for any direction h,
∂

∂t
E
[
ψi

(
τ, η0, φ0 + t h

)]∣∣∣∣
t=0

= 0,

and the mixed derivative ∂2E[ψ]/(∂φ ∂η)
∣∣
(η0,φ0)

is bounded. Consequently, ψi(τ, η, φ) is Neyman

orthogonal in φ at φ0.

Proof of Lemma 7. Fix a direction h ∈ Rp. For small t, let

πt(w) = π
(
w;φ0+t h

)
, qt(z, w) = q

(
z, w;φ0+t h

)
, µt(w) = µ

(
w;φ0+t h

)
, rt(w) = r

(
w;φ0+t h

)
,

and mt(w) = µt(w)− τ rt(w). Define

G(t) = E
[(
Z − πt(W )

) {
Y − τD −mt(W ) + τ qt(Z,W )

}]
.

Icompute dG(t)
dt

∣∣
t=0

. Observe that

Y − τD −mt(W ) + τ qt(Z,W ) = {Y − τD − µt(W ) + τ rt(W )}+ τ {qt(Z,W )− rt(W )}.

Hence

dG(t)

dt

∣∣∣∣
t=0

= E
[
−Dφπ(W ;φ0)[h] {Y − τD −m0(W ) + τ q0(Z,W )}

]
+ E

[(
Z − π0(W )

) {
−Dφµ(W ;φ0)[h] + τ Dφr(W ;φ0)[h] + τ Dφq(Z,W ;φ0)[h]

}]
,
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where

m0(W ) = µ0(W )− τ r0(W ), q0(Z,W ) = E[D | Z,W ], π0(W ) = E[Z | W ].

Let

R = Y − τD − µ0(W ) + τ r0(W ), U = q0(Z,W )− r0(W ).

By definition of the true nuisances, E[R | W ] = 0 and E[U | W ] = 0. Therefore,

E
[
Dφπ(W ;φ0)[h] R

]
= E

[
E[ Dφπ(W ;φ0)[h] R | W ]

]
= 0, E

[
Dφπ(W ;φ0)[h] U

]
= 0.

Thus the first term vanishes. For the second term,

E
[
(Z − π0(W ))Dφµ(W ;φ0)[h]

]
= E

[
E[ (Z − π0(W ))Dφµ(W ;φ0)[h] | W ]

]
= 0,

and similarly E[(Z − π0(W ))Dφr(W ;φ0)[h]] = 0. Finally,

E
[
(Z − π0(W ))Dφq(Z,W ;φ0)[h]

]
= E

[
E[ (Z − π0(W ))Dφq(Z,W ;φ0)[h] | W ]

]
= E

[
Dφr(W ;φ0)[h]− π0(W )Dφr(W ;φ0)[h]

]
= 0,

since E[Dφq(Z,W ;φ0)[h] | W ] = DφE[D | W ][h] = Dφr(W ;φ0)[h]. This shows dG(t)
dt

∣∣
t=0

= 0.

Combined with the facts that ∂
∂η
E[ψi(τ, η, φ0)]

∣∣∣
η0

= 0 and that the mixed second derivatives

remain bounded under A.2–A.3, Iconclude that ψi(τ, η, φ) is orthogonal in φ at φ0.

By merging the standard Gateaux-orthogonality in η (e.g. Chernozhukov et al., 2018) with

Lemma A.1 above, I obtain

∂

∂η
E[ψi(τ, η, φ)]

∣∣∣∣
(η0,φ0)

=
∂

∂φ
E[ψi(τ, η, φ)]

∣∣∣∣
(η0,φ0)

= 0,

and the mixed partial ∂2E[ψ]/(∂φ ∂η)
∣∣
(η0,φ0)

is bounded. Under cross-fitting (Assumption A.1),

any first-order error in η̂ or φ̂ enters the sample analog of the moment only at op(n
−1/2). There-

fore, a fully data-driven pipeline—incorporating robust regularization, feature-importance–based

dimension reduction, and automated model selection (all subsumed under φ)—still yields a
√
n-

consistent, asymptotically normal, and semiparametrically efficient DML–IV estimator.
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Appendix D Joint Identification of (τ, β)

Under the IV-exogeneity and completeness assumptions of Section 2.2, the pair (τ, β) is uniquely

identified by the moment condition

E
[
(Zi − π(Wi)) (Yi − τDi − β⊤Wi,ld −m(Wi))

]
= 0.

In particular, if (τ, β) and (τ ′, β′) both satisfy

E
[
(Zi − π(Wi))

(
(τ − τ ′)Di + (β − β′)⊤Wi,ld

)]
= 0,

then completeness of the conditional law of (Di,Wi,ld) given (Zi,Wi) implies τ = τ ′ and β = β′.

Proof of Appendix D. Define the deviation

h(Di,Wi,ld) = ∆τ Di + ∆β⊤Wi,ld,

where ∆τ = τ − τ ′ and ∆β = β − β′. From the two solutions (τ, β) and (τ ′, β′) both satisfying

E
[
(Zi − π(Wi)) (Yi − τDi − β⊤Wi,ld −m(Wi))

]
= 0,

I subtract and obtain

E
[
(Zi − π(Wi))h(Di,Wi,ld)

]
= 0.

Since π(Wi) = E[Zi | Wi], an application of the law of iterated expectations gives

0 = E
[
E
[
(Zi − π(Wi))h(Di,Wi,ld)

∣∣ Wi

]]
= E

[
Cov

(
Zi, h(Di,Wi,ld)

∣∣ Wi

)]
.

But observe that

Cov
(
Zi, h(Di,Wi,ld)

∣∣ Wi = w
)

= E
[
(Zi−π(w))h(Di,Wi,ld)

∣∣ Wi = w
]
=
〈
h(·), kw(·)

〉
L2(D,Wld|w)

,

where

kw(d, wld) = fD,Wld|Z,W (d, wld | z, w) (z − π(w))
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is the kernel of the linear operator Tw : L2
(
D,Wld | w

)
→ L2(Z | w),

(Twf)(z) =

∫
f(d, wld) fD,Wld|Z,W (d, wld | z, w) d(d, wld).

Completeness of the conditional law of (Di,Wi,ld) given (Zi,Wi) is exactly the statement that

for each w, the operator Tw is injective:

Twf = 0 =⇒ f = 0 a.s.

Since Cov(Z, h | W = w) = 0 for almost every w, I have

〈
h(·), kw(·)

〉
= 0 =⇒ h(d, wld) = 0 for almost every (d, wld),

by injectivity of Tw. Hence ∆τ D + ∆β⊤Wld = 0 almost surely. Finally, because the vector

(D,Wld) has nondegenerate support, the only linear combination that vanishes a.s. is the trivial

one: ∆τ = 0 and ∆β = 0. This proves uniqueness of (τ, β).

Remark 2. If one does not require explicit interpretation of β, simply redefine

m̃(Wi) = m(Wi) + β⊤Wi,ld,

drop the linear term from the structural equation, and estimate τ from

E
[
(Zi − π(Wi)) (Yi − τDi − m̃(Wi))

]
= 0.

The same completeness argument then identifies τ without reference to β. Thus β is included

only for interpretability and does not affect identification of τ .
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Appendix E Supplementary Monte Carlo Results
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Figure 3: Metrics from the First-Stage Predictions
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Figure 4: Metrics from the First-Stage Predictions (Reduced DML)
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